Uploaded model

  • Developed by: skouai
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

Sample Use

!pip install -U bitsandbytes
!pip install -U transformers
!pip install -U accelerate
!pip install -U datasets

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)
import torch
from tqdm import tqdm
import json
HF_TOKEN = "YOUR_TOKEN"
model_name = "skouai/kou-test"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=False,
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map="auto",
    token = HF_TOKEN
)

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token = HF_TOKEN)

datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

results = []
for data in tqdm(datasets):

  input = data["input"]

  prompt = f"""### ζŒ‡η€Ί
  あγͺたは博識γͺ人物です。θ‡ͺεˆ†θ‡ͺθΊ«γ‚’δΏ‘γ˜γ¦ε›žη­”γ—γ¦γγ γ•γ„γ€‚
  {input}
  ### ε›žη­”οΌš
  """

  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

  results.append({"task_id": data["task_id"], "input": input, "output": output})

import re
model_name = re.sub(".*/", "", model_name)
with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for skouai/kou-test

Finetuned
(1124)
this model