metadata
base_model: silma-ai/silma-embeddding-matryoshka-0.1
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:34436
- loss:CosineSimilarityLoss
widget:
- source_sentence: Three men are playing chess.
sentences:
- Two men are fighting.
- امرأة تحمل و تحمل طفل كنغر
- Two men are playing chess.
- source_sentence: Two men are playing chess.
sentences:
- رجل يعزف على الغيتار و يغني
- Three men are playing chess.
- طائرة طيران تقلع
- source_sentence: Two men are playing chess.
sentences:
- A man is playing a large flute. رجل يعزف على ناي كبير
- The man is playing the piano. الرجل يعزف على البيانو
- Three men are playing chess.
- source_sentence: الرجل يعزف على البيانو The man is playing the piano.
sentences:
- رجل يجلس ويلعب الكمان A man seated is playing the cello.
- ثلاثة رجال يلعبون الشطرنج.
- الرجل يعزف على الغيتار The man is playing the guitar.
- source_sentence: الرجل ضرب الرجل الآخر بعصا The man hit the other man with a stick.
sentences:
- الرجل صفع الرجل الآخر بعصا The man spanked the other man with a stick.
- A plane is taking off.
- A man is smoking. رجل يدخن
model-index:
- name: SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 512
type: sts-dev-512
metrics:
- type: pearson_cosine
value: 0.8509127994264242
name: Pearson Cosine
- type: spearman_cosine
value: 0.8548500966032416
name: Spearman Cosine
- type: pearson_manhattan
value: 0.821303728669975
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8364598068079891
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8210450198328316
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8382181658285147
name: Spearman Euclidean
- type: pearson_dot
value: 0.8491261828772604
name: Pearson Dot
- type: spearman_dot
value: 0.8559811107036664
name: Spearman Dot
- type: pearson_max
value: 0.8509127994264242
name: Pearson Max
- type: spearman_max
value: 0.8559811107036664
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev 256
type: sts-dev-256
metrics:
- type: pearson_cosine
value: 0.8498025312190702
name: Pearson Cosine
- type: spearman_cosine
value: 0.8530609768738506
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8181745876468085
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8328727236454085
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8193792688284338
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8338632184708783
name: Spearman Euclidean
- type: pearson_dot
value: 0.8396368156921546
name: Pearson Dot
- type: spearman_dot
value: 0.8484397673758116
name: Spearman Dot
- type: pearson_max
value: 0.8498025312190702
name: Pearson Max
- type: spearman_max
value: 0.8530609768738506
name: Spearman Max
SentenceTransformer based on silma-ai/silma-embeddding-matryoshka-0.1
This is a sentence-transformers model finetuned from silma-ai/silma-embeddding-matryoshka-0.1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: silma-ai/silma-embeddding-matryoshka-0.1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("silma-ai/silma-embeddding-sts-0.1")
# Run inference
sentences = [
'الرجل ضرب الرجل الآخر بعصا The man hit the other man with a stick.',
'الرجل صفع الرجل الآخر بعصا The man spanked the other man with a stick.',
'A man is smoking. رجل يدخن',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev-512
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8509 |
spearman_cosine | 0.8549 |
pearson_manhattan | 0.8213 |
spearman_manhattan | 0.8365 |
pearson_euclidean | 0.821 |
spearman_euclidean | 0.8382 |
pearson_dot | 0.8491 |
spearman_dot | 0.856 |
pearson_max | 0.8509 |
spearman_max | 0.856 |
Semantic Similarity
- Dataset:
sts-dev-256
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8498 |
spearman_cosine | 0.8531 |
pearson_manhattan | 0.8182 |
spearman_manhattan | 0.8329 |
pearson_euclidean | 0.8194 |
spearman_euclidean | 0.8339 |
pearson_dot | 0.8396 |
spearman_dot | 0.8484 |
pearson_max | 0.8498 |
spearman_max | 0.8531 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 34,436 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 15.18 tokens
- max: 42 tokens
- min: 4 tokens
- mean: 15.18 tokens
- max: 42 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence1 sentence2 score A woman picks up and holds a baby kangaroo in her arms. امرأة تحمل في ذراعها طفل كنغر
A woman picks up and holds a baby kangaroo. امرأة تحمل و تحمل طفل كنغر
0.92
امرأة تحمل و تحمل طفل كنغر A woman picks up and holds a baby kangaroo.
امرأة تحمل في ذراعها طفل كنغر A woman picks up and holds a baby kangaroo in her arms.
0.92
رجل يعزف على الناي
رجل يعزف على فرقة الخيزران
0.77
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 100 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 100 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 15.96 tokens
- max: 43 tokens
- min: 4 tokens
- mean: 15.96 tokens
- max: 43 tokens
- min: 0.1
- mean: 0.72
- max: 1.0
- Samples:
sentence1 sentence2 score طائرة ستقلع
طائرة طيران تقلع
1.0
طائرة طيران تقلع
طائرة ستقلع
1.0
A plane is taking off.
An air plane is taking off.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 250per_device_eval_batch_size
: 10learning_rate
: 1e-06num_train_epochs
: 10bf16
: Truedataloader_drop_last
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 250per_device_eval_batch_size
: 10per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-06weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts-dev-512_spearman_cosine | sts-dev-256_spearman_cosine |
---|---|---|---|---|---|
0.3650 | 50 | 0.0395 | 0.0424 | 0.8486 | 0.8487 |
0.7299 | 100 | 0.031 | 0.0427 | 0.8493 | 0.8495 |
1.0949 | 150 | 0.0344 | 0.0430 | 0.8496 | 0.8496 |
1.4599 | 200 | 0.0313 | 0.0427 | 0.8506 | 0.8504 |
1.8248 | 250 | 0.0267 | 0.0428 | 0.8504 | 0.8506 |
2.1898 | 300 | 0.0309 | 0.0429 | 0.8516 | 0.8515 |
2.5547 | 350 | 0.0276 | 0.0425 | 0.8531 | 0.8521 |
2.9197 | 400 | 0.028 | 0.0426 | 0.8530 | 0.8515 |
3.2847 | 450 | 0.0281 | 0.0425 | 0.8539 | 0.8521 |
3.6496 | 500 | 0.0248 | 0.0425 | 0.8542 | 0.8523 |
4.0146 | 550 | 0.0302 | 0.0424 | 0.8541 | 0.8520 |
4.3796 | 600 | 0.0261 | 0.0421 | 0.8545 | 0.8523 |
4.7445 | 650 | 0.0233 | 0.0420 | 0.8544 | 0.8522 |
5.1095 | 700 | 0.0281 | 0.0419 | 0.8547 | 0.8528 |
5.4745 | 750 | 0.0257 | 0.0419 | 0.8546 | 0.8531 |
5.8394 | 800 | 0.0235 | 0.0418 | 0.8546 | 0.8527 |
6.2044 | 850 | 0.0268 | 0.0418 | 0.8551 | 0.8529 |
6.5693 | 900 | 0.0238 | 0.0416 | 0.8552 | 0.8526 |
6.9343 | 950 | 0.0255 | 0.0416 | 0.8549 | 0.8526 |
7.2993 | 1000 | 0.0253 | 0.0416 | 0.8548 | 0.8528 |
7.6642 | 1050 | 0.0225 | 0.0415 | 0.8550 | 0.8525 |
8.0292 | 1100 | 0.0276 | 0.0414 | 0.8550 | 0.8528 |
8.3942 | 1150 | 0.0244 | 0.0415 | 0.8550 | 0.8533 |
8.7591 | 1200 | 0.0218 | 0.0414 | 0.8551 | 0.8529 |
9.1241 | 1250 | 0.0263 | 0.0414 | 0.8550 | 0.8531 |
9.4891 | 1300 | 0.0241 | 0.0414 | 0.8552 | 0.8533 |
9.8540 | 1350 | 0.0227 | 0.0415 | 0.8549 | 0.8531 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.2.0
- Transformers: 4.45.2
- PyTorch: 2.3.1
- Accelerate: 1.0.1
- Datasets: 3.0.1
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}