Model Card for Model ID
Source code: Google Colab
Model Details
Model Description
Can do abstractive summarization of legal/contractual documents. Fine tuned on BART-LARGE-CNN.
- Developed by: Siddhesh Kulthe
- License: MIT
- Finetuned from model: Facebook/BART-LARGE-CNN
Uses
- Abstractive summarization for legal docs (Banking, Legal, Contractual, etc.)
Sample Usage
Load model config and safetensors:
from transformers import BartForConditionalGeneration, BartTokenizer
import torch
model_name = "siddheshtv/bart-multi-lexsum"
model = BartForConditionalGeneration.from_pretrained(model_name)
tokenizer = BartTokenizer.from_pretrained(model_name)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
Generate Summary Function
def generate_summary(model, tokenizer, text, max_length=512):
device = next(model.parameters()).device
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
inputs = inputs.to(device)
summary_ids = model.generate(
inputs,
max_length=max_length,
min_length=40,
length_penalty=2.0,
num_beams=4,
early_stopping=True,
no_repeat_ngram_size=3,
forced_bos_token_id=0,
forced_eos_token_id=2
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
Generate summary
generated_summary = generate_summary(model, tokenizer, example_text)
print("Generated Summary:")
print(generated_summary)
Training Data
- Dataset URL: Multi-Lexsum
- Downloads last month
- 118
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.