whisper-medium-sl / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
56d3b93
|
raw
history blame
2.1 kB
metadata
language:
  - sl
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper Medium Slovenian
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: sl
          split: test
          args: sl
        metrics:
          - type: wer
            value: 16.80513044745664
            name: Wer

Whisper Medium Slovenian

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2653
  • Wer: 16.8051

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 400
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.161 1.33 100 0.2516 21.6149
0.0386 2.66 200 0.2476 18.5979
0.0161 3.99 300 0.2491 17.1841
0.0032 5.33 400 0.2653 16.8051

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2