File size: 1,880 Bytes
2b9846c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: t5-small-ret-conceptnet2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-ret-conceptnet2
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1709
- Acc: {'accuracy': 0.8700980392156863}
- Precision: {'precision': 0.811340206185567}
- Recall: {'recall': 0.9644607843137255}
- F1: {'f1': 0.8812989921612542}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Acc | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------:|:--------------------------------:|:------------------------------:|:--------------------------:|
| 0.1989 | 1.0 | 721 | 0.1709 | {'accuracy': 0.8700980392156863} | {'precision': 0.811340206185567} | {'recall': 0.9644607843137255} | {'f1': 0.8812989921612542} |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|