t5-small-ret-conceptnet2

This model is a fine-tuned version of t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1709
  • Acc: {'accuracy': 0.8700980392156863}
  • Precision: {'precision': 0.811340206185567}
  • Recall: {'recall': 0.9644607843137255}
  • F1: {'f1': 0.8812989921612542}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Acc Precision Recall F1
0.1989 1.0 721 0.1709 {'accuracy': 0.8700980392156863} {'precision': 0.811340206185567} {'recall': 0.9644607843137255} {'f1': 0.8812989921612542}

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.7.1
  • Tokenizers 0.13.2
Downloads last month
110
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.