Commit
·
f0c69b9
1
Parent(s):
8c68cdb
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +18 -16
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -1.17 +/- 0.47
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:504f5744fce5273908f26ec1e4b83bb0ea9a7745bca2329e07bfe0a00d556967
|
3 |
+
size 109572
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -11,7 +11,9 @@
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -24,19 +26,19 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[0.
|
38 |
-
"desired_goal": "[[-1.
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,30 +46,30 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
"gamma": 0.99,
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1682847696561127557,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARezKPmenKDyeiAw/RezKPmenKDyeiAw/RezKPmenKDyeiAw/RezKPmenKDyeiAw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcdAnP9cEzb89uP2+gGSMPsbEnD9F2hA/uPKzv7G9uL22/6A/Ryw8v8BS6r6ZQdi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABF7Mo+Z6coPJ6IDD8mc2c9FiZIu43KXj1F7Mo+Z6coPJ6IDD8mc2c9FiZIu43KXj1F7Mo+Z6coPJ6IDD8mc2c9FiZIu43KXj1F7Mo+Z6coPJ6IDD8mc2c9FiZIu43KXj2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.39633384 0.01029382 0.5489596 ]\n [0.39633384 0.01029382 0.5489596 ]\n [0.39633384 0.01029382 0.5489596 ]\n [0.39633384 0.01029382 0.5489596 ]]",
|
40 |
+
"desired_goal": "[[ 0.6555243 -1.6017102 -0.49554625]\n [ 0.27420425 1.224755 0.5658305 ]\n [-1.4058447 -0.09020556 1.2578037 ]\n [-0.7350506 -0.45766258 -1.6895019 ]]",
|
41 |
+
"observation": "[[ 0.39633384 0.01029382 0.5489596 0.0565063 -0.00305403 0.05439239]\n [ 0.39633384 0.01029382 0.5489596 0.0565063 -0.00305403 0.05439239]\n [ 0.39633384 0.01029382 0.5489596 0.0565063 -0.00305403 0.05439239]\n [ 0.39633384 0.01029382 0.5489596 0.0565063 -0.00305403 0.05439239]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGdWcvCXEFD5PTzI+F0euvdOw+rxZqkA+QIY/vTfOn70pujI+WMmRuz4ixb1WUhU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[-0.01914458 0.14527948 0.17413066]\n [-0.08509653 -0.03060189 0.18814982]\n [-0.04675889 -0.07803004 0.17453827]\n [-0.00444905 -0.09625672 0.1458219 ]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID37iAPp957+UhpRSlIwBbJRLMowBdJRHQKlN8dOqNqB1fZQoaAZoCWgPQwhstYe9UMDfv5SGlFKUaBVLMmgWR0CpTae6I3zddX2UKGgGaAloD0MI2SQ/4les3L+UhpRSlGgVSzJoFkdAqU1g4n4O+nV9lChoBmgJaA9DCOOkMO9x5vy/lIaUUpRoFUsyaBZHQKlNFn5i3G51fZQoaAZoCWgPQwhypZ4Fobzsv5SGlFKUaBVLMmgWR0CpTvenqFAWdX2UKGgGaAloD0MIk+LjE7Jz47+UhpRSlGgVSzJoFkdAqU6tkBjnWHV9lChoBmgJaA9DCDIcz2dAvdS/lIaUUpRoFUsyaBZHQKlOZhZyMk11fZQoaAZoCWgPQwj4FtaNd0ftv5SGlFKUaBVLMmgWR0CpThrJKaoddX2UKGgGaAloD0MIsHH9uz5z9r+UhpRSlGgVSzJoFkdAqU/8r7O3UnV9lChoBmgJaA9DCG2rWWd8H/K/lIaUUpRoFUsyaBZHQKlPsoYvWYp1fZQoaAZoCWgPQwiSrS6nBMTjv5SGlFKUaBVLMmgWR0CpT2spw0fpdX2UKGgGaAloD0MI7l9ZaVKK4b+UhpRSlGgVSzJoFkdAqU8f5xiobXV9lChoBmgJaA9DCII2OXzSSfe/lIaUUpRoFUsyaBZHQKlQ/kTYdyV1fZQoaAZoCWgPQwh2G9R+ayfev5SGlFKUaBVLMmgWR0CpULQYtQKsdX2UKGgGaAloD0MI0LTEymjk7L+UhpRSlGgVSzJoFkdAqVBse0XxfHV9lChoBmgJaA9DCIU/w5s1OPC/lIaUUpRoFUsyaBZHQKlQIS13MZB1fZQoaAZoCWgPQwi5jQbwFkgAwJSGlFKUaBVLMmgWR0CpUe3WnTAndX2UKGgGaAloD0MIhpM0f0zr7L+UhpRSlGgVSzJoFkdAqVGjdxhlUnV9lChoBmgJaA9DCB/Xhopxfuq/lIaUUpRoFUsyaBZHQKlRW/JNj9Z1fZQoaAZoCWgPQwgzG2SSkbP1v5SGlFKUaBVLMmgWR0CpURB5gPVedX2UKGgGaAloD0MIeuBjsOLU4b+UhpRSlGgVSzJoFkdAqVLlJcxCY3V9lChoBmgJaA9DCApMp3Ub1Oi/lIaUUpRoFUsyaBZHQKlSmuEmICV1fZQoaAZoCWgPQwg7Vik90wv2v5SGlFKUaBVLMmgWR0CpUlMVk+X7dX2UKGgGaAloD0MIJQhXQKGe6L+UhpRSlGgVSzJoFkdAqVIHxFy7w3V9lChoBmgJaA9DCGHB/YAHhua/lIaUUpRoFUsyaBZHQKlT2+EAYHh1fZQoaAZoCWgPQwiwHYzYJ4Dgv5SGlFKUaBVLMmgWR0CpU5HLaEi/dX2UKGgGaAloD0MIqRH6mXod/L+UhpRSlGgVSzJoFkdAqVNKLqD9O3V9lChoBmgJaA9DCOGzdXCwt+i/lIaUUpRoFUsyaBZHQKlS/tix3V11fZQoaAZoCWgPQwhWnkDYKVbZv5SGlFKUaBVLMmgWR0CpVMnzH0btdX2UKGgGaAloD0MI7Es2Hmyx37+UhpRSlGgVSzJoFkdAqVR/r4WUKXV9lChoBmgJaA9DCG0BofXwpfK/lIaUUpRoFUsyaBZHQKlUOAoXsPd1fZQoaAZoCWgPQwicoiO5/Ef+v5SGlFKUaBVLMmgWR0CpU+yZa3ZxdX2UKGgGaAloD0MIxyqlZ3oJ57+UhpRSlGgVSzJoFkdAqVXWnKnvUnV9lChoBmgJaA9DCCoCnN7F++C/lIaUUpRoFUsyaBZHQKlVjFc6eXl1fZQoaAZoCWgPQwj8prBSQUX3v5SGlFKUaBVLMmgWR0CpVUVOKwY+dX2UKGgGaAloD0MIIEHxY8xd9b+UhpRSlGgVSzJoFkdAqVT5xtHhCXV9lChoBmgJaA9DCDuPiv87oui/lIaUUpRoFUsyaBZHQKlXYlO45Lh1fZQoaAZoCWgPQwi1FfvL7gn6v5SGlFKUaBVLMmgWR0CpVxj4xk/bdX2UKGgGaAloD0MIr7Mh/8yg8r+UhpRSlGgVSzJoFkdAqVbSMPz4DnV9lChoBmgJaA9DCJgYy/RLROm/lIaUUpRoFUsyaBZHQKlWh7xd6cB1fZQoaAZoCWgPQwg89x4uOa7xv5SGlFKUaBVLMmgWR0CpWPeGoJiRdX2UKGgGaAloD0MIinQ/pyC/5b+UhpRSlGgVSzJoFkdAqViuVE/jbXV9lChoBmgJaA9DCFUX8DLDBvq/lIaUUpRoFUsyaBZHQKlYZ8a4tpV1fZQoaAZoCWgPQwgv3/qw3ujyv5SGlFKUaBVLMmgWR0CpWB2Lgn+idX2UKGgGaAloD0MIP6vMlNYf8b+UhpRSlGgVSzJoFkdAqVrsiSq2jXV9lChoBmgJaA9DCHGpSltcY+y/lIaUUpRoFUsyaBZHQKlao2xY7q91fZQoaAZoCWgPQwhjf9k9edj2v5SGlFKUaBVLMmgWR0CpWlyIpH7QdX2UKGgGaAloD0MI5Uf8ijV8AsCUhpRSlGgVSzJoFkdAqVoToEB8yHV9lChoBmgJaA9DCJgxBWucDfS/lIaUUpRoFUsyaBZHQKlc2THsC1Z1fZQoaAZoCWgPQwhTknU4usrrv5SGlFKUaBVLMmgWR0CpXI/TCtRvdX2UKGgGaAloD0MIX0IFhxfE87+UhpRSlGgVSzJoFkdAqVxJCOWBz3V9lChoBmgJaA9DCFWEm4wqg/u/lIaUUpRoFUsyaBZHQKlb/mfXf651fZQoaAZoCWgPQwifxyjPvJz3v5SGlFKUaBVLMmgWR0CpXq0cGTs6dX2UKGgGaAloD0MImmA41zBD97+UhpRSlGgVSzJoFkdAqV5jB2wFDHV9lChoBmgJaA9DCFDG+DB72fK/lIaUUpRoFUsyaBZHQKleG5NGmUJ1fZQoaAZoCWgPQwjL9EvEW2f0v5SGlFKUaBVLMmgWR0CpXdBky1u0dX2UKGgGaAloD0MIgc6kTdX99b+UhpRSlGgVSzJoFkdAqV/E8NhE0HV9lChoBmgJaA9DCKSl8naE0+2/lIaUUpRoFUsyaBZHQKlfetOEdvN1fZQoaAZoCWgPQwidnKG4403/v5SGlFKUaBVLMmgWR0CpXzPIwM6SdX2UKGgGaAloD0MI7YDrihkh9r+UhpRSlGgVSzJoFkdAqV7ofCAMD3V9lChoBmgJaA9DCFzoSgSqf/e/lIaUUpRoFUsyaBZHQKlgv61stTV1fZQoaAZoCWgPQwgtCyb+KGrvv5SGlFKUaBVLMmgWR0CpYHVYp2ECdX2UKGgGaAloD0MIHSJuTiUD7b+UhpRSlGgVSzJoFkdAqWAt2HLzPXV9lChoBmgJaA9DCCPcZFQZRva/lIaUUpRoFUsyaBZHQKlf4k/KQq91fZQoaAZoCWgPQwhkzcggd9H3v5SGlFKUaBVLMmgWR0CpYbcU/OdHdX2UKGgGaAloD0MIZHjsZ7EU6r+UhpRSlGgVSzJoFkdAqWFsvwmVq3V9lChoBmgJaA9DCA0a+ie4GPO/lIaUUpRoFUsyaBZHQKlhJS4OMER1fZQoaAZoCWgPQwjajqm7skv1v5SGlFKUaBVLMmgWR0CpYNnZ00WNdX2UKGgGaAloD0MIOGVuvhFd+b+UhpRSlGgVSzJoFkdAqWLhQ+EAYHV9lChoBmgJaA9DCN7Jp8e2DPy/lIaUUpRoFUsyaBZHQKlil6rNnoR1fZQoaAZoCWgPQwgnoImw4Wnov5SGlFKUaBVLMmgWR0CpYlAcDKYBdX2UKGgGaAloD0MIc77Ye/EF8b+UhpRSlGgVSzJoFkdAqWIE2FWXC3V9lChoBmgJaA9DCOaV620z1fK/lIaUUpRoFUsyaBZHQKlj6EWZZ0V1fZQoaAZoCWgPQwgjZvZ5jHLqv5SGlFKUaBVLMmgWR0CpY53yZrpJdX2UKGgGaAloD0MInnx6bMuA7L+UhpRSlGgVSzJoFkdAqWNWQIUrTnV9lChoBmgJaA9DCK99Ab1wZ/S/lIaUUpRoFUsyaBZHQKljCus90Rx1fZQoaAZoCWgPQwheDrvvGB70v5SGlFKUaBVLMmgWR0CpZOc5CF9KdX2UKGgGaAloD0MIkZp2Mc009L+UhpRSlGgVSzJoFkdAqWSdAZ88cXV9lChoBmgJaA9DCJoklpS7z+e/lIaUUpRoFUsyaBZHQKlkVWT5ftx1fZQoaAZoCWgPQwig/N07akzmv5SGlFKUaBVLMmgWR0CpZAoK+i8GdX2UKGgGaAloD0MIC7jn+dMG+b+UhpRSlGgVSzJoFkdAqWXbaK1og3V9lChoBmgJaA9DCEn1nV+UoNy/lIaUUpRoFUsyaBZHQKllkQWepXJ1fZQoaAZoCWgPQwgDYDyDhv7uv5SGlFKUaBVLMmgWR0CpZUld9lVcdX2UKGgGaAloD0MIBW9IowLn+r+UhpRSlGgVSzJoFkdAqWT+BczIm3V9lChoBmgJaA9DCOPFwhA5/eq/lIaUUpRoFUsyaBZHQKlm2ZWJaaF1fZQoaAZoCWgPQwifzarP1Vbrv5SGlFKUaBVLMmgWR0CpZo8yvcJudX2UKGgGaAloD0MIrd9MTBci+b+UhpRSlGgVSzJoFkdAqWZHn4fwJHV9lChoBmgJaA9DCDHrxVBO9PS/lIaUUpRoFUsyaBZHQKll/Ew35vd1fZQoaAZoCWgPQwhOs0C7Q6oAwJSGlFKUaBVLMmgWR0CpZ83sHB1tdX2UKGgGaAloD0MIJTyh15+E87+UhpRSlGgVSzJoFkdAqWeDqMWGh3V9lChoBmgJaA9DCGO4OgDiLvG/lIaUUpRoFUsyaBZHQKlnPA0sOG11fZQoaAZoCWgPQwgUW0HTEmv9v5SGlFKUaBVLMmgWR0CpZvC4SYgJdX2UKGgGaAloD0MIjPSidr9K/L+UhpRSlGgVSzJoFkdAqWjM6vJRwnV9lChoBmgJaA9DCMDQI0bPrfG/lIaUUpRoFUsyaBZHQKlogrtE5Qx1fZQoaAZoCWgPQwifrYODvQnrv5SGlFKUaBVLMmgWR0CpaDsMiKR/dX2UKGgGaAloD0MIgxd9BWnG+7+UhpRSlGgVSzJoFkdAqWfv974SH3V9lChoBmgJaA9DCDp6/N6mv+q/lIaUUpRoFUsyaBZHQKlpxr9ETg51fZQoaAZoCWgPQwhNS6yMRj7kv5SGlFKUaBVLMmgWR0CpaXzJQtSRdX2UKGgGaAloD0MIofXwZaIIAsCUhpRSlGgVSzJoFkdAqWk1U2kzoHV9lChoBmgJaA9DCDdxcr9DUfy/lIaUUpRoFUsyaBZHQKlo6hvBJqZ1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 31250,
|
68 |
+
"n_steps": 8,
|
69 |
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49bfe5714b9a559a1a1bde3505ca2b60cd0c11648358de333182f7be4f9cef2e
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c220e872823028086204dcf2f79efb5b79613d18e7a3b013728feb3dee1522e
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fceded01b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcedecfa440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682841940780036420, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaj60PvzchztDrfQ+aj60PvzchztDrfQ+aj60PvzchztDrfQ+aj60PvzchztDrfQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl92Iv7Qbvb64i16/nlEcvwa2Fj4Q4se/qO+kP+6uEb8Epiu/HMRIv10VjT+yECa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DtqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DtqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DtqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.35203868 0.00414622 0.47788438]\n [0.35203868 0.00414622 0.47788438]\n [0.35203868 0.00414622 0.47788438]\n [0.35203868 0.00414622 0.47788438]]", "desired_goal": "[[-1.0692624 -0.36935198 -0.86931944]\n [-0.6106204 0.14717874 -1.5615864 ]\n [ 1.2885637 -0.56907547 -0.67050195]\n [-0.7842424 1.1022145 -0.64869225]]", "observation": "[[ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]\n [ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]\n [ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]\n [ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvin6PS0BgD0xwBI+XG0Vvm7DGD72xJg+0cgGvik2AL1Nbxc+oW2FvfKvC76i8zs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12214993 0.06250224 0.14331128]\n [-0.14592499 0.149183 0.2983777 ]\n [-0.13162543 -0.03130165 0.14788552]\n [-0.06515051 -0.13641337 0.18354657]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+5KNB1vMDcCUhpRSlIwBbJRLMowBdJRHQKqWMUQkHD91fZQoaAZoCWgPQwjP2QJC66EPwJSGlFKUaBVLMmgWR0CqleAH3UQTdX2UKGgGaAloD0MIlGqfjscsHMCUhpRSlGgVSzJoFkdAqpVz4YaYNXV9lChoBmgJaA9DCJYhjnVxGxPAlIaUUpRoFUsyaBZHQKqVJd43WFx1fZQoaAZoCWgPQwiEY5Y9CbwSwJSGlFKUaBVLMmgWR0CqlzzJIUaidX2UKGgGaAloD0MIY2Adxw+VDMCUhpRSlGgVSzJoFkdAqpbrj7yhBnV9lChoBmgJaA9DCP0yGCMSxQvAlIaUUpRoFUsyaBZHQKqWf07r9l51fZQoaAZoCWgPQwheud42U+ERwJSGlFKUaBVLMmgWR0CqljE4vN/wdX2UKGgGaAloD0MIPBbbpKLRBMCUhpRSlGgVSzJoFkdAqphOt8uzyHV9lChoBmgJaA9DCPpfrkUL0AXAlIaUUpRoFUsyaBZHQKqX/dfLLZB1fZQoaAZoCWgPQwh/MPDce8gSwJSGlFKUaBVLMmgWR0Cql5GcOLBLdX2UKGgGaAloD0MIWI6QgTy7FMCUhpRSlGgVSzJoFkdAqpdDl/6O53V9lChoBmgJaA9DCOaSqu0m2BLAlIaUUpRoFUsyaBZHQKqZYLux8lZ1fZQoaAZoCWgPQwhfKGA7GCETwJSGlFKUaBVLMmgWR0CqmQ+G47RwdX2UKGgGaAloD0MIDVAaahTyFsCUhpRSlGgVSzJoFkdAqpijTWoWHnV9lChoBmgJaA9DCIaqmEo/AQbAlIaUUpRoFUsyaBZHQKqYVUVi4KB1fZQoaAZoCWgPQwikN9xHbi0bwJSGlFKUaBVLMmgWR0CqmmILXtjTdX2UKGgGaAloD0MIe9rhr8kqFsCUhpRSlGgVSzJoFkdAqpoRBqsU7HV9lChoBmgJaA9DCJFEL6NYjgbAlIaUUpRoFUsyaBZHQKqZpMnqmj11fZQoaAZoCWgPQwhNgczOojcUwJSGlFKUaBVLMmgWR0CqmVbnPmgbdX2UKGgGaAloD0MIfO4E+69TC8CUhpRSlGgVSzJoFkdAqptr0z0pVnV9lChoBmgJaA9DCCTSNv5EtRXAlIaUUpRoFUsyaBZHQKqbGpRXOnl1fZQoaAZoCWgPQwiD+pY5XWYUwJSGlFKUaBVLMmgWR0Cqmq5TZQHidX2UKGgGaAloD0MIhIO9iSGpFMCUhpRSlGgVSzJoFkdAqppgSg5BC3V9lChoBmgJaA9DCP1qDhDMoRHAlIaUUpRoFUsyaBZHQKqcfx3FDOV1fZQoaAZoCWgPQwheSl0yjkETwJSGlFKUaBVLMmgWR0CqnC3yqdYodX2UKGgGaAloD0MILnQlAtUPF8CUhpRSlGgVSzJoFkdAqpvBtHhCMXV9lChoBmgJaA9DCOCcEaW94RjAlIaUUpRoFUsyaBZHQKqbc7g88tB1fZQoaAZoCWgPQwhr1EM0ulMXwJSGlFKUaBVLMmgWR0CqnYF7laKUdX2UKGgGaAloD0MIg0wychYmFcCUhpRSlGgVSzJoFkdAqp0wMUh3aHV9lChoBmgJaA9DCIIclDDT5hDAlIaUUpRoFUsyaBZHQKqcw/i5uqF1fZQoaAZoCWgPQwh1yM1wA94XwJSGlFKUaBVLMmgWR0CqnHXi704BdX2UKGgGaAloD0MIbm3hean4FsCUhpRSlGgVSzJoFkdAqp8GnCO3lXV9lChoBmgJaA9DCAr3yrxVVwvAlIaUUpRoFUsyaBZHQKqetgvUSZl1fZQoaAZoCWgPQwjRWWYRiu0LwJSGlFKUaBVLMmgWR0CqnkqMefZmdX2UKGgGaAloD0MIzNB4IohzFcCUhpRSlGgVSzJoFkdAqp39ORDCxnV9lChoBmgJaA9DCLr0L0llehHAlIaUUpRoFUsyaBZHQKqgpX4j8k51fZQoaAZoCWgPQwhjt88qM4USwJSGlFKUaBVLMmgWR0CqoFTmnwXqdX2UKGgGaAloD0MI0a3X9KBwHsCUhpRSlGgVSzJoFkdAqp/pcxCY1HV9lChoBmgJaA9DCAJhp1g1qBPAlIaUUpRoFUsyaBZHQKqfnGvwEyN1fZQoaAZoCWgPQwjUnpJzYq8SwJSGlFKUaBVLMmgWR0CqolFImPYGdX2UKGgGaAloD0MIHaz/c5jfE8CUhpRSlGgVSzJoFkdAqqIAtSQ5m3V9lChoBmgJaA9DCAU25+CZMBfAlIaUUpRoFUsyaBZHQKqhlS/j81p1fZQoaAZoCWgPQwhm+iXirVMVwJSGlFKUaBVLMmgWR0CqoUfhMrVfdX2UKGgGaAloD0MI/1vJjo3gCsCUhpRSlGgVSzJoFkdAqqQSUVzp5nV9lChoBmgJaA9DCNfBwd7E4BTAlIaUUpRoFUsyaBZHQKqjwdKdxyZ1fZQoaAZoCWgPQwi9cVKY92gbwJSGlFKUaBVLMmgWR0Cqo1dg4OtodX2UKGgGaAloD0MIKEhsdw/gGcCUhpRSlGgVSzJoFkdAqqMKLVFx43V9lChoBmgJaA9DCGoTJ/c7lAfAlIaUUpRoFUsyaBZHQKqlyqqfe1t1fZQoaAZoCWgPQwhCmNu93EcSwJSGlFKUaBVLMmgWR0CqpXoWHk92dX2UKGgGaAloD0MIa0dxjjpaDcCUhpRSlGgVSzJoFkdAqqUOqaPS2HV9lChoBmgJaA9DCBAf2PFfEBnAlIaUUpRoFUsyaBZHQKqkwXk5p8F1fZQoaAZoCWgPQwhNvtnmxlQRwJSGlFKUaBVLMmgWR0Cqp5RmTTvzdX2UKGgGaAloD0MIEmiwqfMIFMCUhpRSlGgVSzJoFkdAqqdD9uP3jHV9lChoBmgJaA9DCMbCEDl9fRHAlIaUUpRoFUsyaBZHQKqm2JJoTPB1fZQoaAZoCWgPQwjzj75J09AgwJSGlFKUaBVLMmgWR0Cqpot7rs0IdX2UKGgGaAloD0MIBwsnaf7YCsCUhpRSlGgVSzJoFkdAqqlxd+ocaXV9lChoBmgJaA9DCIBlpUkpiBLAlIaUUpRoFUsyaBZHQKqpIVopQUJ1fZQoaAZoCWgPQwjjqNxELX0TwJSGlFKUaBVLMmgWR0CqqLXj2i+MdX2UKGgGaAloD0MIhC7h0FvEIMCUhpRSlGgVSzJoFkdAqqhomNR3vHV9lChoBmgJaA9DCGxCWmPQCRDAlIaUUpRoFUsyaBZHQKqqqdWhh6V1fZQoaAZoCWgPQwghrTHohNAGwJSGlFKUaBVLMmgWR0Cqqlijk+5fdX2UKGgGaAloD0MIiEm4kEeQDMCUhpRSlGgVSzJoFkdAqqnsoOQQtnV9lChoBmgJaA9DCJrPudv1sg3AlIaUUpRoFUsyaBZHQKqpnqSHM2Z1fZQoaAZoCWgPQwgLtaZ5x4kMwJSGlFKUaBVLMmgWR0Cqq78cENe/dX2UKGgGaAloD0MIwtoYO+FFC8CUhpRSlGgVSzJoFkdAqqtuF+NLlHV9lChoBmgJaA9DCPmh0oiZ/R7AlIaUUpRoFUsyaBZHQKqrAhouf291fZQoaAZoCWgPQwjGqGvtfQoKwJSGlFKUaBVLMmgWR0CqqrQsf7rLdX2UKGgGaAloD0MI8X7cfvnECsCUhpRSlGgVSzJoFkdAqqzNMIu5BnV9lChoBmgJaA9DCNNqSNxjeRXAlIaUUpRoFUsyaBZHQKqse/bj94x1fZQoaAZoCWgPQwgLRE/KpEYNwJSGlFKUaBVLMmgWR0CqrA+7cwg1dX2UKGgGaAloD0MIxOi5ha6EDsCUhpRSlGgVSzJoFkdAqqvB0U47zXV9lChoBmgJaA9DCHZsBOJ1jRnAlIaUUpRoFUsyaBZHQKqt3ZeRgZ11fZQoaAZoCWgPQwj+fFuwVAcXwJSGlFKUaBVLMmgWR0CqrYxoZhrndX2UKGgGaAloD0MIiSgmb4AJEsCUhpRSlGgVSzJoFkdAqq0gWLxZuHV9lChoBmgJaA9DCLSwpx3+yhLAlIaUUpRoFUsyaBZHQKqs0lHjIaN1fZQoaAZoCWgPQwgsY0M3+yMVwJSGlFKUaBVLMmgWR0CqrvY8U21ldX2UKGgGaAloD0MIXYsWoG3lEsCUhpRSlGgVSzJoFkdAqq6lCRfWtnV9lChoBmgJaA9DCPjFpSpt8RTAlIaUUpRoFUsyaBZHQKquOOS4e911fZQoaAZoCWgPQwg9CtejcC0RwJSGlFKUaBVLMmgWR0Cqres+mm+CdX2UKGgGaAloD0MI7FBNSdZhF8CUhpRSlGgVSzJoFkdAqrAIEGJN03V9lChoBmgJaA9DCGu6nui6cA/AlIaUUpRoFUsyaBZHQKqvtwOvt+l1fZQoaAZoCWgPQwjXTL7Z5sYIwJSGlFKUaBVLMmgWR0Cqr0rDqGDddX2UKGgGaAloD0MIZHRAEvYtGMCUhpRSlGgVSzJoFkdAqq78wztTk3V9lChoBmgJaA9DCGfuIeF7TxjAlIaUUpRoFUsyaBZHQKqxFoYekpJ1fZQoaAZoCWgPQwhNE7afjLEKwJSGlFKUaBVLMmgWR0CqsMVSXMQmdX2UKGgGaAloD0MI3Xwjumd9HMCUhpRSlGgVSzJoFkdAqrBZLbpNbnV9lChoBmgJaA9DCNaNd0fGCgbAlIaUUpRoFUsyaBZHQKqwCzVMEid1fZQoaAZoCWgPQwh3nnjOFhAawJSGlFKUaBVLMmgWR0CqsjeQuEmIdX2UKGgGaAloD0MI7DAm/b3EHMCUhpRSlGgVSzJoFkdAqrHmjoIOY3V9lChoBmgJaA9DCPgW1o13JxnAlIaUUpRoFUsyaBZHQKqxem6XjVB1fZQoaAZoCWgPQwjaVN0jm4sYwJSGlFKUaBVLMmgWR0CqsSy13MY/dX2UKGgGaAloD0MI/dtlv+60EMCUhpRSlGgVSzJoFkdAqrNFFc6eXnV9lChoBmgJaA9DCDSBIhYxzB7AlIaUUpRoFUsyaBZHQKqy8+qR2bJ1fZQoaAZoCWgPQwgvNq0UAlkOwJSGlFKUaBVLMmgWR0CqsofkeZG8dX2UKGgGaAloD0MIqp1haksdBcCUhpRSlGgVSzJoFkdAqrI50dRzinV9lChoBmgJaA9DCP578NqlzRjAlIaUUpRoFUsyaBZHQKq0VSHdoFp1fZQoaAZoCWgPQwgAkBMmjIYKwJSGlFKUaBVLMmgWR0CqtAPqs2ehdX2UKGgGaAloD0MIsD2zJEDtFsCUhpRSlGgVSzJoFkdAqrOXyZrpJXV9lChoBmgJaA9DCL5O6svSDhbAlIaUUpRoFUsyaBZHQKqzSgCfYjB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fceded01b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcedecfa440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682847696561127557, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARezKPmenKDyeiAw/RezKPmenKDyeiAw/RezKPmenKDyeiAw/RezKPmenKDyeiAw/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcdAnP9cEzb89uP2+gGSMPsbEnD9F2hA/uPKzv7G9uL22/6A/Ryw8v8BS6r6ZQdi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABF7Mo+Z6coPJ6IDD8mc2c9FiZIu43KXj1F7Mo+Z6coPJ6IDD8mc2c9FiZIu43KXj1F7Mo+Z6coPJ6IDD8mc2c9FiZIu43KXj1F7Mo+Z6coPJ6IDD8mc2c9FiZIu43KXj2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.39633384 0.01029382 0.5489596 ]\n [0.39633384 0.01029382 0.5489596 ]\n [0.39633384 0.01029382 0.5489596 ]\n [0.39633384 0.01029382 0.5489596 ]]", "desired_goal": "[[ 0.6555243 -1.6017102 -0.49554625]\n [ 0.27420425 1.224755 0.5658305 ]\n [-1.4058447 -0.09020556 1.2578037 ]\n [-0.7350506 -0.45766258 -1.6895019 ]]", "observation": "[[ 0.39633384 0.01029382 0.5489596 0.0565063 -0.00305403 0.05439239]\n [ 0.39633384 0.01029382 0.5489596 0.0565063 -0.00305403 0.05439239]\n [ 0.39633384 0.01029382 0.5489596 0.0565063 -0.00305403 0.05439239]\n [ 0.39633384 0.01029382 0.5489596 0.0565063 -0.00305403 0.05439239]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGdWcvCXEFD5PTzI+F0euvdOw+rxZqkA+QIY/vTfOn70pujI+WMmRuz4ixb1WUhU+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01914458 0.14527948 0.17413066]\n [-0.08509653 -0.03060189 0.18814982]\n [-0.04675889 -0.07803004 0.17453827]\n [-0.00444905 -0.09625672 0.1458219 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMID37iAPp957+UhpRSlIwBbJRLMowBdJRHQKlN8dOqNqB1fZQoaAZoCWgPQwhstYe9UMDfv5SGlFKUaBVLMmgWR0CpTae6I3zddX2UKGgGaAloD0MI2SQ/4les3L+UhpRSlGgVSzJoFkdAqU1g4n4O+nV9lChoBmgJaA9DCOOkMO9x5vy/lIaUUpRoFUsyaBZHQKlNFn5i3G51fZQoaAZoCWgPQwhypZ4Fobzsv5SGlFKUaBVLMmgWR0CpTvenqFAWdX2UKGgGaAloD0MIk+LjE7Jz47+UhpRSlGgVSzJoFkdAqU6tkBjnWHV9lChoBmgJaA9DCDIcz2dAvdS/lIaUUpRoFUsyaBZHQKlOZhZyMk11fZQoaAZoCWgPQwj4FtaNd0ftv5SGlFKUaBVLMmgWR0CpThrJKaoddX2UKGgGaAloD0MIsHH9uz5z9r+UhpRSlGgVSzJoFkdAqU/8r7O3UnV9lChoBmgJaA9DCG2rWWd8H/K/lIaUUpRoFUsyaBZHQKlPsoYvWYp1fZQoaAZoCWgPQwiSrS6nBMTjv5SGlFKUaBVLMmgWR0CpT2spw0fpdX2UKGgGaAloD0MI7l9ZaVKK4b+UhpRSlGgVSzJoFkdAqU8f5xiobXV9lChoBmgJaA9DCII2OXzSSfe/lIaUUpRoFUsyaBZHQKlQ/kTYdyV1fZQoaAZoCWgPQwh2G9R+ayfev5SGlFKUaBVLMmgWR0CpULQYtQKsdX2UKGgGaAloD0MI0LTEymjk7L+UhpRSlGgVSzJoFkdAqVBse0XxfHV9lChoBmgJaA9DCIU/w5s1OPC/lIaUUpRoFUsyaBZHQKlQIS13MZB1fZQoaAZoCWgPQwi5jQbwFkgAwJSGlFKUaBVLMmgWR0CpUe3WnTAndX2UKGgGaAloD0MIhpM0f0zr7L+UhpRSlGgVSzJoFkdAqVGjdxhlUnV9lChoBmgJaA9DCB/Xhopxfuq/lIaUUpRoFUsyaBZHQKlRW/JNj9Z1fZQoaAZoCWgPQwgzG2SSkbP1v5SGlFKUaBVLMmgWR0CpURB5gPVedX2UKGgGaAloD0MIeuBjsOLU4b+UhpRSlGgVSzJoFkdAqVLlJcxCY3V9lChoBmgJaA9DCApMp3Ub1Oi/lIaUUpRoFUsyaBZHQKlSmuEmICV1fZQoaAZoCWgPQwg7Vik90wv2v5SGlFKUaBVLMmgWR0CpUlMVk+X7dX2UKGgGaAloD0MIJQhXQKGe6L+UhpRSlGgVSzJoFkdAqVIHxFy7w3V9lChoBmgJaA9DCGHB/YAHhua/lIaUUpRoFUsyaBZHQKlT2+EAYHh1fZQoaAZoCWgPQwiwHYzYJ4Dgv5SGlFKUaBVLMmgWR0CpU5HLaEi/dX2UKGgGaAloD0MIqRH6mXod/L+UhpRSlGgVSzJoFkdAqVNKLqD9O3V9lChoBmgJaA9DCOGzdXCwt+i/lIaUUpRoFUsyaBZHQKlS/tix3V11fZQoaAZoCWgPQwhWnkDYKVbZv5SGlFKUaBVLMmgWR0CpVMnzH0btdX2UKGgGaAloD0MI7Es2Hmyx37+UhpRSlGgVSzJoFkdAqVR/r4WUKXV9lChoBmgJaA9DCG0BofXwpfK/lIaUUpRoFUsyaBZHQKlUOAoXsPd1fZQoaAZoCWgPQwicoiO5/Ef+v5SGlFKUaBVLMmgWR0CpU+yZa3ZxdX2UKGgGaAloD0MIxyqlZ3oJ57+UhpRSlGgVSzJoFkdAqVXWnKnvUnV9lChoBmgJaA9DCCoCnN7F++C/lIaUUpRoFUsyaBZHQKlVjFc6eXl1fZQoaAZoCWgPQwj8prBSQUX3v5SGlFKUaBVLMmgWR0CpVUVOKwY+dX2UKGgGaAloD0MIIEHxY8xd9b+UhpRSlGgVSzJoFkdAqVT5xtHhCXV9lChoBmgJaA9DCDuPiv87oui/lIaUUpRoFUsyaBZHQKlXYlO45Lh1fZQoaAZoCWgPQwi1FfvL7gn6v5SGlFKUaBVLMmgWR0CpVxj4xk/bdX2UKGgGaAloD0MIr7Mh/8yg8r+UhpRSlGgVSzJoFkdAqVbSMPz4DnV9lChoBmgJaA9DCJgYy/RLROm/lIaUUpRoFUsyaBZHQKlWh7xd6cB1fZQoaAZoCWgPQwg89x4uOa7xv5SGlFKUaBVLMmgWR0CpWPeGoJiRdX2UKGgGaAloD0MIinQ/pyC/5b+UhpRSlGgVSzJoFkdAqViuVE/jbXV9lChoBmgJaA9DCFUX8DLDBvq/lIaUUpRoFUsyaBZHQKlYZ8a4tpV1fZQoaAZoCWgPQwgv3/qw3ujyv5SGlFKUaBVLMmgWR0CpWB2Lgn+idX2UKGgGaAloD0MIP6vMlNYf8b+UhpRSlGgVSzJoFkdAqVrsiSq2jXV9lChoBmgJaA9DCHGpSltcY+y/lIaUUpRoFUsyaBZHQKlao2xY7q91fZQoaAZoCWgPQwhjf9k9edj2v5SGlFKUaBVLMmgWR0CpWlyIpH7QdX2UKGgGaAloD0MI5Uf8ijV8AsCUhpRSlGgVSzJoFkdAqVoToEB8yHV9lChoBmgJaA9DCJgxBWucDfS/lIaUUpRoFUsyaBZHQKlc2THsC1Z1fZQoaAZoCWgPQwhTknU4usrrv5SGlFKUaBVLMmgWR0CpXI/TCtRvdX2UKGgGaAloD0MIX0IFhxfE87+UhpRSlGgVSzJoFkdAqVxJCOWBz3V9lChoBmgJaA9DCFWEm4wqg/u/lIaUUpRoFUsyaBZHQKlb/mfXf651fZQoaAZoCWgPQwifxyjPvJz3v5SGlFKUaBVLMmgWR0CpXq0cGTs6dX2UKGgGaAloD0MImmA41zBD97+UhpRSlGgVSzJoFkdAqV5jB2wFDHV9lChoBmgJaA9DCFDG+DB72fK/lIaUUpRoFUsyaBZHQKleG5NGmUJ1fZQoaAZoCWgPQwjL9EvEW2f0v5SGlFKUaBVLMmgWR0CpXdBky1u0dX2UKGgGaAloD0MIgc6kTdX99b+UhpRSlGgVSzJoFkdAqV/E8NhE0HV9lChoBmgJaA9DCKSl8naE0+2/lIaUUpRoFUsyaBZHQKlfetOEdvN1fZQoaAZoCWgPQwidnKG4403/v5SGlFKUaBVLMmgWR0CpXzPIwM6SdX2UKGgGaAloD0MI7YDrihkh9r+UhpRSlGgVSzJoFkdAqV7ofCAMD3V9lChoBmgJaA9DCFzoSgSqf/e/lIaUUpRoFUsyaBZHQKlgv61stTV1fZQoaAZoCWgPQwgtCyb+KGrvv5SGlFKUaBVLMmgWR0CpYHVYp2ECdX2UKGgGaAloD0MIHSJuTiUD7b+UhpRSlGgVSzJoFkdAqWAt2HLzPXV9lChoBmgJaA9DCCPcZFQZRva/lIaUUpRoFUsyaBZHQKlf4k/KQq91fZQoaAZoCWgPQwhkzcggd9H3v5SGlFKUaBVLMmgWR0CpYbcU/OdHdX2UKGgGaAloD0MIZHjsZ7EU6r+UhpRSlGgVSzJoFkdAqWFsvwmVq3V9lChoBmgJaA9DCA0a+ie4GPO/lIaUUpRoFUsyaBZHQKlhJS4OMER1fZQoaAZoCWgPQwjajqm7skv1v5SGlFKUaBVLMmgWR0CpYNnZ00WNdX2UKGgGaAloD0MIOGVuvhFd+b+UhpRSlGgVSzJoFkdAqWLhQ+EAYHV9lChoBmgJaA9DCN7Jp8e2DPy/lIaUUpRoFUsyaBZHQKlil6rNnoR1fZQoaAZoCWgPQwgnoImw4Wnov5SGlFKUaBVLMmgWR0CpYlAcDKYBdX2UKGgGaAloD0MIc77Ye/EF8b+UhpRSlGgVSzJoFkdAqWIE2FWXC3V9lChoBmgJaA9DCOaV620z1fK/lIaUUpRoFUsyaBZHQKlj6EWZZ0V1fZQoaAZoCWgPQwgjZvZ5jHLqv5SGlFKUaBVLMmgWR0CpY53yZrpJdX2UKGgGaAloD0MInnx6bMuA7L+UhpRSlGgVSzJoFkdAqWNWQIUrTnV9lChoBmgJaA9DCK99Ab1wZ/S/lIaUUpRoFUsyaBZHQKljCus90Rx1fZQoaAZoCWgPQwheDrvvGB70v5SGlFKUaBVLMmgWR0CpZOc5CF9KdX2UKGgGaAloD0MIkZp2Mc009L+UhpRSlGgVSzJoFkdAqWSdAZ88cXV9lChoBmgJaA9DCJoklpS7z+e/lIaUUpRoFUsyaBZHQKlkVWT5ftx1fZQoaAZoCWgPQwig/N07akzmv5SGlFKUaBVLMmgWR0CpZAoK+i8GdX2UKGgGaAloD0MIC7jn+dMG+b+UhpRSlGgVSzJoFkdAqWXbaK1og3V9lChoBmgJaA9DCEn1nV+UoNy/lIaUUpRoFUsyaBZHQKllkQWepXJ1fZQoaAZoCWgPQwgDYDyDhv7uv5SGlFKUaBVLMmgWR0CpZUld9lVcdX2UKGgGaAloD0MIBW9IowLn+r+UhpRSlGgVSzJoFkdAqWT+BczIm3V9lChoBmgJaA9DCOPFwhA5/eq/lIaUUpRoFUsyaBZHQKlm2ZWJaaF1fZQoaAZoCWgPQwifzarP1Vbrv5SGlFKUaBVLMmgWR0CpZo8yvcJudX2UKGgGaAloD0MIrd9MTBci+b+UhpRSlGgVSzJoFkdAqWZHn4fwJHV9lChoBmgJaA9DCDHrxVBO9PS/lIaUUpRoFUsyaBZHQKll/Ew35vd1fZQoaAZoCWgPQwhOs0C7Q6oAwJSGlFKUaBVLMmgWR0CpZ83sHB1tdX2UKGgGaAloD0MIJTyh15+E87+UhpRSlGgVSzJoFkdAqWeDqMWGh3V9lChoBmgJaA9DCGO4OgDiLvG/lIaUUpRoFUsyaBZHQKlnPA0sOG11fZQoaAZoCWgPQwgUW0HTEmv9v5SGlFKUaBVLMmgWR0CpZvC4SYgJdX2UKGgGaAloD0MIjPSidr9K/L+UhpRSlGgVSzJoFkdAqWjM6vJRwnV9lChoBmgJaA9DCMDQI0bPrfG/lIaUUpRoFUsyaBZHQKlogrtE5Qx1fZQoaAZoCWgPQwifrYODvQnrv5SGlFKUaBVLMmgWR0CpaDsMiKR/dX2UKGgGaAloD0MIgxd9BWnG+7+UhpRSlGgVSzJoFkdAqWfv974SH3V9lChoBmgJaA9DCDp6/N6mv+q/lIaUUpRoFUsyaBZHQKlpxr9ETg51fZQoaAZoCWgPQwhNS6yMRj7kv5SGlFKUaBVLMmgWR0CpaXzJQtSRdX2UKGgGaAloD0MIofXwZaIIAsCUhpRSlGgVSzJoFkdAqWk1U2kzoHV9lChoBmgJaA9DCDdxcr9DUfy/lIaUUpRoFUsyaBZHQKlo6hvBJqZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -1.169085236103274, "std_reward": 0.46918815215644677, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T10:36:39.571173"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2470
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:125041f05bef026716761a305bcae05aa6299eb5fb4a298e9e4197bf1e857eba
|
3 |
size 2470
|