shreyansjain commited on
Commit
8c68cdb
·
1 Parent(s): 7f5303d

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -6.70 +/- 1.51
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db3f69f9c3402cf40fc92580387450a515dd00bfe3518083a877f7449da3e88c
3
+ size 108063
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fceded01b40>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fcedecfa440>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1682841940780036420,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaj60PvzchztDrfQ+aj60PvzchztDrfQ+aj60PvzchztDrfQ+aj60PvzchztDrfQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl92Iv7Qbvb64i16/nlEcvwa2Fj4Q4se/qO+kP+6uEb8Epiu/HMRIv10VjT+yECa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DtqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DtqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DtqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DuUaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[0.35203868 0.00414622 0.47788438]\n [0.35203868 0.00414622 0.47788438]\n [0.35203868 0.00414622 0.47788438]\n [0.35203868 0.00414622 0.47788438]]",
38
+ "desired_goal": "[[-1.0692624 -0.36935198 -0.86931944]\n [-0.6106204 0.14717874 -1.5615864 ]\n [ 1.2885637 -0.56907547 -0.67050195]\n [-0.7842424 1.1022145 -0.64869225]]",
39
+ "observation": "[[ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]\n [ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]\n [ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]\n [ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvin6PS0BgD0xwBI+XG0Vvm7DGD72xJg+0cgGvik2AL1Nbxc+oW2FvfKvC76i8zs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.12214993 0.06250224 0.14331128]\n [-0.14592499 0.149183 0.2983777 ]\n [-0.13162543 -0.03130165 0.14788552]\n [-0.06515051 -0.13641337 0.18354657]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.0,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+5KNB1vMDcCUhpRSlIwBbJRLMowBdJRHQKqWMUQkHD91fZQoaAZoCWgPQwjP2QJC66EPwJSGlFKUaBVLMmgWR0CqleAH3UQTdX2UKGgGaAloD0MIlGqfjscsHMCUhpRSlGgVSzJoFkdAqpVz4YaYNXV9lChoBmgJaA9DCJYhjnVxGxPAlIaUUpRoFUsyaBZHQKqVJd43WFx1fZQoaAZoCWgPQwiEY5Y9CbwSwJSGlFKUaBVLMmgWR0CqlzzJIUaidX2UKGgGaAloD0MIY2Adxw+VDMCUhpRSlGgVSzJoFkdAqpbrj7yhBnV9lChoBmgJaA9DCP0yGCMSxQvAlIaUUpRoFUsyaBZHQKqWf07r9l51fZQoaAZoCWgPQwheud42U+ERwJSGlFKUaBVLMmgWR0CqljE4vN/wdX2UKGgGaAloD0MIPBbbpKLRBMCUhpRSlGgVSzJoFkdAqphOt8uzyHV9lChoBmgJaA9DCPpfrkUL0AXAlIaUUpRoFUsyaBZHQKqX/dfLLZB1fZQoaAZoCWgPQwh/MPDce8gSwJSGlFKUaBVLMmgWR0Cql5GcOLBLdX2UKGgGaAloD0MIWI6QgTy7FMCUhpRSlGgVSzJoFkdAqpdDl/6O53V9lChoBmgJaA9DCOaSqu0m2BLAlIaUUpRoFUsyaBZHQKqZYLux8lZ1fZQoaAZoCWgPQwhfKGA7GCETwJSGlFKUaBVLMmgWR0CqmQ+G47RwdX2UKGgGaAloD0MIDVAaahTyFsCUhpRSlGgVSzJoFkdAqpijTWoWHnV9lChoBmgJaA9DCIaqmEo/AQbAlIaUUpRoFUsyaBZHQKqYVUVi4KB1fZQoaAZoCWgPQwikN9xHbi0bwJSGlFKUaBVLMmgWR0CqmmILXtjTdX2UKGgGaAloD0MIe9rhr8kqFsCUhpRSlGgVSzJoFkdAqpoRBqsU7HV9lChoBmgJaA9DCJFEL6NYjgbAlIaUUpRoFUsyaBZHQKqZpMnqmj11fZQoaAZoCWgPQwhNgczOojcUwJSGlFKUaBVLMmgWR0CqmVbnPmgbdX2UKGgGaAloD0MIfO4E+69TC8CUhpRSlGgVSzJoFkdAqptr0z0pVnV9lChoBmgJaA9DCCTSNv5EtRXAlIaUUpRoFUsyaBZHQKqbGpRXOnl1fZQoaAZoCWgPQwiD+pY5XWYUwJSGlFKUaBVLMmgWR0Cqmq5TZQHidX2UKGgGaAloD0MIhIO9iSGpFMCUhpRSlGgVSzJoFkdAqppgSg5BC3V9lChoBmgJaA9DCP1qDhDMoRHAlIaUUpRoFUsyaBZHQKqcfx3FDOV1fZQoaAZoCWgPQwheSl0yjkETwJSGlFKUaBVLMmgWR0CqnC3yqdYodX2UKGgGaAloD0MILnQlAtUPF8CUhpRSlGgVSzJoFkdAqpvBtHhCMXV9lChoBmgJaA9DCOCcEaW94RjAlIaUUpRoFUsyaBZHQKqbc7g88tB1fZQoaAZoCWgPQwhr1EM0ulMXwJSGlFKUaBVLMmgWR0CqnYF7laKUdX2UKGgGaAloD0MIg0wychYmFcCUhpRSlGgVSzJoFkdAqp0wMUh3aHV9lChoBmgJaA9DCIIclDDT5hDAlIaUUpRoFUsyaBZHQKqcw/i5uqF1fZQoaAZoCWgPQwh1yM1wA94XwJSGlFKUaBVLMmgWR0CqnHXi704BdX2UKGgGaAloD0MIbm3hean4FsCUhpRSlGgVSzJoFkdAqp8GnCO3lXV9lChoBmgJaA9DCAr3yrxVVwvAlIaUUpRoFUsyaBZHQKqetgvUSZl1fZQoaAZoCWgPQwjRWWYRiu0LwJSGlFKUaBVLMmgWR0CqnkqMefZmdX2UKGgGaAloD0MIzNB4IohzFcCUhpRSlGgVSzJoFkdAqp39ORDCxnV9lChoBmgJaA9DCLr0L0llehHAlIaUUpRoFUsyaBZHQKqgpX4j8k51fZQoaAZoCWgPQwhjt88qM4USwJSGlFKUaBVLMmgWR0CqoFTmnwXqdX2UKGgGaAloD0MI0a3X9KBwHsCUhpRSlGgVSzJoFkdAqp/pcxCY1HV9lChoBmgJaA9DCAJhp1g1qBPAlIaUUpRoFUsyaBZHQKqfnGvwEyN1fZQoaAZoCWgPQwjUnpJzYq8SwJSGlFKUaBVLMmgWR0CqolFImPYGdX2UKGgGaAloD0MIHaz/c5jfE8CUhpRSlGgVSzJoFkdAqqIAtSQ5m3V9lChoBmgJaA9DCAU25+CZMBfAlIaUUpRoFUsyaBZHQKqhlS/j81p1fZQoaAZoCWgPQwhm+iXirVMVwJSGlFKUaBVLMmgWR0CqoUfhMrVfdX2UKGgGaAloD0MI/1vJjo3gCsCUhpRSlGgVSzJoFkdAqqQSUVzp5nV9lChoBmgJaA9DCNfBwd7E4BTAlIaUUpRoFUsyaBZHQKqjwdKdxyZ1fZQoaAZoCWgPQwi9cVKY92gbwJSGlFKUaBVLMmgWR0Cqo1dg4OtodX2UKGgGaAloD0MIKEhsdw/gGcCUhpRSlGgVSzJoFkdAqqMKLVFx43V9lChoBmgJaA9DCGoTJ/c7lAfAlIaUUpRoFUsyaBZHQKqlyqqfe1t1fZQoaAZoCWgPQwhCmNu93EcSwJSGlFKUaBVLMmgWR0CqpXoWHk92dX2UKGgGaAloD0MIa0dxjjpaDcCUhpRSlGgVSzJoFkdAqqUOqaPS2HV9lChoBmgJaA9DCBAf2PFfEBnAlIaUUpRoFUsyaBZHQKqkwXk5p8F1fZQoaAZoCWgPQwhNvtnmxlQRwJSGlFKUaBVLMmgWR0Cqp5RmTTvzdX2UKGgGaAloD0MIEmiwqfMIFMCUhpRSlGgVSzJoFkdAqqdD9uP3jHV9lChoBmgJaA9DCMbCEDl9fRHAlIaUUpRoFUsyaBZHQKqm2JJoTPB1fZQoaAZoCWgPQwjzj75J09AgwJSGlFKUaBVLMmgWR0Cqpot7rs0IdX2UKGgGaAloD0MIBwsnaf7YCsCUhpRSlGgVSzJoFkdAqqlxd+ocaXV9lChoBmgJaA9DCIBlpUkpiBLAlIaUUpRoFUsyaBZHQKqpIVopQUJ1fZQoaAZoCWgPQwjjqNxELX0TwJSGlFKUaBVLMmgWR0CqqLXj2i+MdX2UKGgGaAloD0MIhC7h0FvEIMCUhpRSlGgVSzJoFkdAqqhomNR3vHV9lChoBmgJaA9DCGxCWmPQCRDAlIaUUpRoFUsyaBZHQKqqqdWhh6V1fZQoaAZoCWgPQwghrTHohNAGwJSGlFKUaBVLMmgWR0Cqqlijk+5fdX2UKGgGaAloD0MIiEm4kEeQDMCUhpRSlGgVSzJoFkdAqqnsoOQQtnV9lChoBmgJaA9DCJrPudv1sg3AlIaUUpRoFUsyaBZHQKqpnqSHM2Z1fZQoaAZoCWgPQwgLtaZ5x4kMwJSGlFKUaBVLMmgWR0Cqq78cENe/dX2UKGgGaAloD0MIwtoYO+FFC8CUhpRSlGgVSzJoFkdAqqtuF+NLlHV9lChoBmgJaA9DCPmh0oiZ/R7AlIaUUpRoFUsyaBZHQKqrAhouf291fZQoaAZoCWgPQwjGqGvtfQoKwJSGlFKUaBVLMmgWR0CqqrQsf7rLdX2UKGgGaAloD0MI8X7cfvnECsCUhpRSlGgVSzJoFkdAqqzNMIu5BnV9lChoBmgJaA9DCNNqSNxjeRXAlIaUUpRoFUsyaBZHQKqse/bj94x1fZQoaAZoCWgPQwgLRE/KpEYNwJSGlFKUaBVLMmgWR0CqrA+7cwg1dX2UKGgGaAloD0MIxOi5ha6EDsCUhpRSlGgVSzJoFkdAqqvB0U47zXV9lChoBmgJaA9DCHZsBOJ1jRnAlIaUUpRoFUsyaBZHQKqt3ZeRgZ11fZQoaAZoCWgPQwj+fFuwVAcXwJSGlFKUaBVLMmgWR0CqrYxoZhrndX2UKGgGaAloD0MIiSgmb4AJEsCUhpRSlGgVSzJoFkdAqq0gWLxZuHV9lChoBmgJaA9DCLSwpx3+yhLAlIaUUpRoFUsyaBZHQKqs0lHjIaN1fZQoaAZoCWgPQwgsY0M3+yMVwJSGlFKUaBVLMmgWR0CqrvY8U21ldX2UKGgGaAloD0MIXYsWoG3lEsCUhpRSlGgVSzJoFkdAqq6lCRfWtnV9lChoBmgJaA9DCPjFpSpt8RTAlIaUUpRoFUsyaBZHQKquOOS4e911fZQoaAZoCWgPQwg9CtejcC0RwJSGlFKUaBVLMmgWR0Cqres+mm+CdX2UKGgGaAloD0MI7FBNSdZhF8CUhpRSlGgVSzJoFkdAqrAIEGJN03V9lChoBmgJaA9DCGu6nui6cA/AlIaUUpRoFUsyaBZHQKqvtwOvt+l1fZQoaAZoCWgPQwjXTL7Z5sYIwJSGlFKUaBVLMmgWR0Cqr0rDqGDddX2UKGgGaAloD0MIZHRAEvYtGMCUhpRSlGgVSzJoFkdAqq78wztTk3V9lChoBmgJaA9DCGfuIeF7TxjAlIaUUpRoFUsyaBZHQKqxFoYekpJ1fZQoaAZoCWgPQwhNE7afjLEKwJSGlFKUaBVLMmgWR0CqsMVSXMQmdX2UKGgGaAloD0MI3Xwjumd9HMCUhpRSlGgVSzJoFkdAqrBZLbpNbnV9lChoBmgJaA9DCNaNd0fGCgbAlIaUUpRoFUsyaBZHQKqwCzVMEid1fZQoaAZoCWgPQwh3nnjOFhAawJSGlFKUaBVLMmgWR0CqsjeQuEmIdX2UKGgGaAloD0MI7DAm/b3EHMCUhpRSlGgVSzJoFkdAqrHmjoIOY3V9lChoBmgJaA9DCPgW1o13JxnAlIaUUpRoFUsyaBZHQKqxem6XjVB1fZQoaAZoCWgPQwjaVN0jm4sYwJSGlFKUaBVLMmgWR0CqsSy13MY/dX2UKGgGaAloD0MI/dtlv+60EMCUhpRSlGgVSzJoFkdAqrNFFc6eXnV9lChoBmgJaA9DCDSBIhYxzB7AlIaUUpRoFUsyaBZHQKqy8+qR2bJ1fZQoaAZoCWgPQwgvNq0UAlkOwJSGlFKUaBVLMmgWR0CqsofkeZG8dX2UKGgGaAloD0MIqp1haksdBcCUhpRSlGgVSzJoFkdAqrI50dRzinV9lChoBmgJaA9DCP578NqlzRjAlIaUUpRoFUsyaBZHQKq0VSHdoFp1fZQoaAZoCWgPQwgAkBMmjIYKwJSGlFKUaBVLMmgWR0CqtAPqs2ehdX2UKGgGaAloD0MIsD2zJEDtFsCUhpRSlGgVSzJoFkdAqrOXyZrpJXV9lChoBmgJaA9DCL5O6svSDhbAlIaUUpRoFUsyaBZHQKqzSgCfYjB1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 50000,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3352dd6eb400ede2c85c51e407d39f99fb6e79c7c3ed54d381423d0db7998585
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:daa26aa5f0e346e0c48544c1d272358d75a7a31cf87489c0ea9ec13e79e5c502
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fceded01b40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcedecfa440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682841940780036420, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAaj60PvzchztDrfQ+aj60PvzchztDrfQ+aj60PvzchztDrfQ+aj60PvzchztDrfQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAl92Iv7Qbvb64i16/nlEcvwa2Fj4Q4se/qO+kP+6uEb8Epiu/HMRIv10VjT+yECa/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DtqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DtqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DtqPrQ+/NyHO0Ot9D5u4547n1OeuhZ52DuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.35203868 0.00414622 0.47788438]\n [0.35203868 0.00414622 0.47788438]\n [0.35203868 0.00414622 0.47788438]\n [0.35203868 0.00414622 0.47788438]]", "desired_goal": "[[-1.0692624 -0.36935198 -0.86931944]\n [-0.6106204 0.14717874 -1.5615864 ]\n [ 1.2885637 -0.56907547 -0.67050195]\n [-0.7842424 1.1022145 -0.64869225]]", "observation": "[[ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]\n [ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]\n [ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]\n [ 0.35203868 0.00414622 0.47788438 0.00484889 -0.00120794 0.00660623]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAvin6PS0BgD0xwBI+XG0Vvm7DGD72xJg+0cgGvik2AL1Nbxc+oW2FvfKvC76i8zs+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12214993 0.06250224 0.14331128]\n [-0.14592499 0.149183 0.2983777 ]\n [-0.13162543 -0.03130165 0.14788552]\n [-0.06515051 -0.13641337 0.18354657]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+5KNB1vMDcCUhpRSlIwBbJRLMowBdJRHQKqWMUQkHD91fZQoaAZoCWgPQwjP2QJC66EPwJSGlFKUaBVLMmgWR0CqleAH3UQTdX2UKGgGaAloD0MIlGqfjscsHMCUhpRSlGgVSzJoFkdAqpVz4YaYNXV9lChoBmgJaA9DCJYhjnVxGxPAlIaUUpRoFUsyaBZHQKqVJd43WFx1fZQoaAZoCWgPQwiEY5Y9CbwSwJSGlFKUaBVLMmgWR0CqlzzJIUaidX2UKGgGaAloD0MIY2Adxw+VDMCUhpRSlGgVSzJoFkdAqpbrj7yhBnV9lChoBmgJaA9DCP0yGCMSxQvAlIaUUpRoFUsyaBZHQKqWf07r9l51fZQoaAZoCWgPQwheud42U+ERwJSGlFKUaBVLMmgWR0CqljE4vN/wdX2UKGgGaAloD0MIPBbbpKLRBMCUhpRSlGgVSzJoFkdAqphOt8uzyHV9lChoBmgJaA9DCPpfrkUL0AXAlIaUUpRoFUsyaBZHQKqX/dfLLZB1fZQoaAZoCWgPQwh/MPDce8gSwJSGlFKUaBVLMmgWR0Cql5GcOLBLdX2UKGgGaAloD0MIWI6QgTy7FMCUhpRSlGgVSzJoFkdAqpdDl/6O53V9lChoBmgJaA9DCOaSqu0m2BLAlIaUUpRoFUsyaBZHQKqZYLux8lZ1fZQoaAZoCWgPQwhfKGA7GCETwJSGlFKUaBVLMmgWR0CqmQ+G47RwdX2UKGgGaAloD0MIDVAaahTyFsCUhpRSlGgVSzJoFkdAqpijTWoWHnV9lChoBmgJaA9DCIaqmEo/AQbAlIaUUpRoFUsyaBZHQKqYVUVi4KB1fZQoaAZoCWgPQwikN9xHbi0bwJSGlFKUaBVLMmgWR0CqmmILXtjTdX2UKGgGaAloD0MIe9rhr8kqFsCUhpRSlGgVSzJoFkdAqpoRBqsU7HV9lChoBmgJaA9DCJFEL6NYjgbAlIaUUpRoFUsyaBZHQKqZpMnqmj11fZQoaAZoCWgPQwhNgczOojcUwJSGlFKUaBVLMmgWR0CqmVbnPmgbdX2UKGgGaAloD0MIfO4E+69TC8CUhpRSlGgVSzJoFkdAqptr0z0pVnV9lChoBmgJaA9DCCTSNv5EtRXAlIaUUpRoFUsyaBZHQKqbGpRXOnl1fZQoaAZoCWgPQwiD+pY5XWYUwJSGlFKUaBVLMmgWR0Cqmq5TZQHidX2UKGgGaAloD0MIhIO9iSGpFMCUhpRSlGgVSzJoFkdAqppgSg5BC3V9lChoBmgJaA9DCP1qDhDMoRHAlIaUUpRoFUsyaBZHQKqcfx3FDOV1fZQoaAZoCWgPQwheSl0yjkETwJSGlFKUaBVLMmgWR0CqnC3yqdYodX2UKGgGaAloD0MILnQlAtUPF8CUhpRSlGgVSzJoFkdAqpvBtHhCMXV9lChoBmgJaA9DCOCcEaW94RjAlIaUUpRoFUsyaBZHQKqbc7g88tB1fZQoaAZoCWgPQwhr1EM0ulMXwJSGlFKUaBVLMmgWR0CqnYF7laKUdX2UKGgGaAloD0MIg0wychYmFcCUhpRSlGgVSzJoFkdAqp0wMUh3aHV9lChoBmgJaA9DCIIclDDT5hDAlIaUUpRoFUsyaBZHQKqcw/i5uqF1fZQoaAZoCWgPQwh1yM1wA94XwJSGlFKUaBVLMmgWR0CqnHXi704BdX2UKGgGaAloD0MIbm3hean4FsCUhpRSlGgVSzJoFkdAqp8GnCO3lXV9lChoBmgJaA9DCAr3yrxVVwvAlIaUUpRoFUsyaBZHQKqetgvUSZl1fZQoaAZoCWgPQwjRWWYRiu0LwJSGlFKUaBVLMmgWR0CqnkqMefZmdX2UKGgGaAloD0MIzNB4IohzFcCUhpRSlGgVSzJoFkdAqp39ORDCxnV9lChoBmgJaA9DCLr0L0llehHAlIaUUpRoFUsyaBZHQKqgpX4j8k51fZQoaAZoCWgPQwhjt88qM4USwJSGlFKUaBVLMmgWR0CqoFTmnwXqdX2UKGgGaAloD0MI0a3X9KBwHsCUhpRSlGgVSzJoFkdAqp/pcxCY1HV9lChoBmgJaA9DCAJhp1g1qBPAlIaUUpRoFUsyaBZHQKqfnGvwEyN1fZQoaAZoCWgPQwjUnpJzYq8SwJSGlFKUaBVLMmgWR0CqolFImPYGdX2UKGgGaAloD0MIHaz/c5jfE8CUhpRSlGgVSzJoFkdAqqIAtSQ5m3V9lChoBmgJaA9DCAU25+CZMBfAlIaUUpRoFUsyaBZHQKqhlS/j81p1fZQoaAZoCWgPQwhm+iXirVMVwJSGlFKUaBVLMmgWR0CqoUfhMrVfdX2UKGgGaAloD0MI/1vJjo3gCsCUhpRSlGgVSzJoFkdAqqQSUVzp5nV9lChoBmgJaA9DCNfBwd7E4BTAlIaUUpRoFUsyaBZHQKqjwdKdxyZ1fZQoaAZoCWgPQwi9cVKY92gbwJSGlFKUaBVLMmgWR0Cqo1dg4OtodX2UKGgGaAloD0MIKEhsdw/gGcCUhpRSlGgVSzJoFkdAqqMKLVFx43V9lChoBmgJaA9DCGoTJ/c7lAfAlIaUUpRoFUsyaBZHQKqlyqqfe1t1fZQoaAZoCWgPQwhCmNu93EcSwJSGlFKUaBVLMmgWR0CqpXoWHk92dX2UKGgGaAloD0MIa0dxjjpaDcCUhpRSlGgVSzJoFkdAqqUOqaPS2HV9lChoBmgJaA9DCBAf2PFfEBnAlIaUUpRoFUsyaBZHQKqkwXk5p8F1fZQoaAZoCWgPQwhNvtnmxlQRwJSGlFKUaBVLMmgWR0Cqp5RmTTvzdX2UKGgGaAloD0MIEmiwqfMIFMCUhpRSlGgVSzJoFkdAqqdD9uP3jHV9lChoBmgJaA9DCMbCEDl9fRHAlIaUUpRoFUsyaBZHQKqm2JJoTPB1fZQoaAZoCWgPQwjzj75J09AgwJSGlFKUaBVLMmgWR0Cqpot7rs0IdX2UKGgGaAloD0MIBwsnaf7YCsCUhpRSlGgVSzJoFkdAqqlxd+ocaXV9lChoBmgJaA9DCIBlpUkpiBLAlIaUUpRoFUsyaBZHQKqpIVopQUJ1fZQoaAZoCWgPQwjjqNxELX0TwJSGlFKUaBVLMmgWR0CqqLXj2i+MdX2UKGgGaAloD0MIhC7h0FvEIMCUhpRSlGgVSzJoFkdAqqhomNR3vHV9lChoBmgJaA9DCGxCWmPQCRDAlIaUUpRoFUsyaBZHQKqqqdWhh6V1fZQoaAZoCWgPQwghrTHohNAGwJSGlFKUaBVLMmgWR0Cqqlijk+5fdX2UKGgGaAloD0MIiEm4kEeQDMCUhpRSlGgVSzJoFkdAqqnsoOQQtnV9lChoBmgJaA9DCJrPudv1sg3AlIaUUpRoFUsyaBZHQKqpnqSHM2Z1fZQoaAZoCWgPQwgLtaZ5x4kMwJSGlFKUaBVLMmgWR0Cqq78cENe/dX2UKGgGaAloD0MIwtoYO+FFC8CUhpRSlGgVSzJoFkdAqqtuF+NLlHV9lChoBmgJaA9DCPmh0oiZ/R7AlIaUUpRoFUsyaBZHQKqrAhouf291fZQoaAZoCWgPQwjGqGvtfQoKwJSGlFKUaBVLMmgWR0CqqrQsf7rLdX2UKGgGaAloD0MI8X7cfvnECsCUhpRSlGgVSzJoFkdAqqzNMIu5BnV9lChoBmgJaA9DCNNqSNxjeRXAlIaUUpRoFUsyaBZHQKqse/bj94x1fZQoaAZoCWgPQwgLRE/KpEYNwJSGlFKUaBVLMmgWR0CqrA+7cwg1dX2UKGgGaAloD0MIxOi5ha6EDsCUhpRSlGgVSzJoFkdAqqvB0U47zXV9lChoBmgJaA9DCHZsBOJ1jRnAlIaUUpRoFUsyaBZHQKqt3ZeRgZ11fZQoaAZoCWgPQwj+fFuwVAcXwJSGlFKUaBVLMmgWR0CqrYxoZhrndX2UKGgGaAloD0MIiSgmb4AJEsCUhpRSlGgVSzJoFkdAqq0gWLxZuHV9lChoBmgJaA9DCLSwpx3+yhLAlIaUUpRoFUsyaBZHQKqs0lHjIaN1fZQoaAZoCWgPQwgsY0M3+yMVwJSGlFKUaBVLMmgWR0CqrvY8U21ldX2UKGgGaAloD0MIXYsWoG3lEsCUhpRSlGgVSzJoFkdAqq6lCRfWtnV9lChoBmgJaA9DCPjFpSpt8RTAlIaUUpRoFUsyaBZHQKquOOS4e911fZQoaAZoCWgPQwg9CtejcC0RwJSGlFKUaBVLMmgWR0Cqres+mm+CdX2UKGgGaAloD0MI7FBNSdZhF8CUhpRSlGgVSzJoFkdAqrAIEGJN03V9lChoBmgJaA9DCGu6nui6cA/AlIaUUpRoFUsyaBZHQKqvtwOvt+l1fZQoaAZoCWgPQwjXTL7Z5sYIwJSGlFKUaBVLMmgWR0Cqr0rDqGDddX2UKGgGaAloD0MIZHRAEvYtGMCUhpRSlGgVSzJoFkdAqq78wztTk3V9lChoBmgJaA9DCGfuIeF7TxjAlIaUUpRoFUsyaBZHQKqxFoYekpJ1fZQoaAZoCWgPQwhNE7afjLEKwJSGlFKUaBVLMmgWR0CqsMVSXMQmdX2UKGgGaAloD0MI3Xwjumd9HMCUhpRSlGgVSzJoFkdAqrBZLbpNbnV9lChoBmgJaA9DCNaNd0fGCgbAlIaUUpRoFUsyaBZHQKqwCzVMEid1fZQoaAZoCWgPQwh3nnjOFhAawJSGlFKUaBVLMmgWR0CqsjeQuEmIdX2UKGgGaAloD0MI7DAm/b3EHMCUhpRSlGgVSzJoFkdAqrHmjoIOY3V9lChoBmgJaA9DCPgW1o13JxnAlIaUUpRoFUsyaBZHQKqxem6XjVB1fZQoaAZoCWgPQwjaVN0jm4sYwJSGlFKUaBVLMmgWR0CqsSy13MY/dX2UKGgGaAloD0MI/dtlv+60EMCUhpRSlGgVSzJoFkdAqrNFFc6eXnV9lChoBmgJaA9DCDSBIhYxzB7AlIaUUpRoFUsyaBZHQKqy8+qR2bJ1fZQoaAZoCWgPQwgvNq0UAlkOwJSGlFKUaBVLMmgWR0CqsofkeZG8dX2UKGgGaAloD0MIqp1haksdBcCUhpRSlGgVSzJoFkdAqrI50dRzinV9lChoBmgJaA9DCP578NqlzRjAlIaUUpRoFUsyaBZHQKq0VSHdoFp1fZQoaAZoCWgPQwgAkBMmjIYKwJSGlFKUaBVLMmgWR0CqtAPqs2ehdX2UKGgGaAloD0MIsD2zJEDtFsCUhpRSlGgVSzJoFkdAqrOXyZrpJXV9lChoBmgJaA9DCL5O6svSDhbAlIaUUpRoFUsyaBZHQKqzSgCfYjB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (839 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -6.703829737193883, "std_reward": 1.514482537195456, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T09:03:57.377610"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a950ebcebbcc51e71cc146d8c4cb978f2b9ce2d36a4e92fccbe3d2b7d86bbf6
3
+ size 2470