layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7293
  • Answer: {'precision': 0.7119205298013245, 'recall': 0.7972805933250927, 'f1': 0.7521865889212828, 'number': 809}
  • Header: {'precision': 0.30327868852459017, 'recall': 0.31092436974789917, 'f1': 0.3070539419087137, 'number': 119}
  • Question: {'precision': 0.7780701754385965, 'recall': 0.8328638497652582, 'f1': 0.8045351473922903, 'number': 1065}
  • Overall Precision: 0.7237
  • Overall Recall: 0.7873
  • Overall F1: 0.7541
  • Overall Accuracy: 0.7994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8121 1.0 10 1.5778 {'precision': 0.02838221381267739, 'recall': 0.037082818294190356, 'f1': 0.03215434083601286, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.19402985074626866, 'recall': 0.20751173708920187, 'f1': 0.20054446460980033, 'number': 1065} 0.1143 0.1259 0.1198 0.4198
1.4301 2.0 20 1.2246 {'precision': 0.15695067264573992, 'recall': 0.12978986402966625, 'f1': 0.14208389715832204, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.46811702925731435, 'recall': 0.5859154929577465, 'f1': 0.5204336947456214, 'number': 1065} 0.3641 0.3658 0.3650 0.5873
1.0718 3.0 30 0.9296 {'precision': 0.48633879781420764, 'recall': 0.5500618046971569, 'f1': 0.5162412993039442, 'number': 809} {'precision': 0.029411764705882353, 'recall': 0.008403361344537815, 'f1': 0.013071895424836602, 'number': 119} {'precision': 0.5914927768860353, 'recall': 0.692018779342723, 'f1': 0.6378191259195154, 'number': 1065} 0.5390 0.5936 0.5649 0.7243
0.814 4.0 40 0.7678 {'precision': 0.5895765472312704, 'recall': 0.6711990111248455, 'f1': 0.6277456647398845, 'number': 809} {'precision': 0.1724137931034483, 'recall': 0.12605042016806722, 'f1': 0.14563106796116504, 'number': 119} {'precision': 0.64, 'recall': 0.7661971830985915, 'f1': 0.6974358974358974, 'number': 1065} 0.6018 0.6894 0.6427 0.7677
0.6527 5.0 50 0.7178 {'precision': 0.6438653637350705, 'recall': 0.7330037082818294, 'f1': 0.6855491329479768, 'number': 809} {'precision': 0.3, 'recall': 0.17647058823529413, 'f1': 0.22222222222222224, 'number': 119} {'precision': 0.675, 'recall': 0.8112676056338028, 'f1': 0.7368869936034115, 'number': 1065} 0.6508 0.7416 0.6932 0.7851
0.5605 6.0 60 0.6839 {'precision': 0.6655982905982906, 'recall': 0.7700865265760197, 'f1': 0.7140401146131805, 'number': 809} {'precision': 0.29411764705882354, 'recall': 0.21008403361344538, 'f1': 0.2450980392156863, 'number': 119} {'precision': 0.7222222222222222, 'recall': 0.8178403755868544, 'f1': 0.7670629678555702, 'number': 1065} 0.6821 0.7622 0.7199 0.7950
0.4793 7.0 70 0.6672 {'precision': 0.6862955032119914, 'recall': 0.792336217552534, 'f1': 0.7355134825014343, 'number': 809} {'precision': 0.25961538461538464, 'recall': 0.226890756302521, 'f1': 0.242152466367713, 'number': 119} {'precision': 0.7552083333333334, 'recall': 0.8169014084507042, 'f1': 0.7848443843031124, 'number': 1065} 0.7023 0.7717 0.7354 0.8014
0.4262 8.0 80 0.6747 {'precision': 0.6762886597938145, 'recall': 0.8108776266996292, 'f1': 0.7374929735806633, 'number': 809} {'precision': 0.24509803921568626, 'recall': 0.21008403361344538, 'f1': 0.22624434389140272, 'number': 119} {'precision': 0.7618228718830611, 'recall': 0.831924882629108, 'f1': 0.7953321364452423, 'number': 1065} 0.7011 0.7863 0.7412 0.8000
0.3773 9.0 90 0.6885 {'precision': 0.6932314410480349, 'recall': 0.7849196538936959, 'f1': 0.736231884057971, 'number': 809} {'precision': 0.30701754385964913, 'recall': 0.29411764705882354, 'f1': 0.30042918454935624, 'number': 119} {'precision': 0.7628865979381443, 'recall': 0.8338028169014085, 'f1': 0.7967698519515478, 'number': 1065} 0.7101 0.7817 0.7442 0.8015
0.3709 10.0 100 0.6915 {'precision': 0.6982758620689655, 'recall': 0.8009888751545118, 'f1': 0.7461139896373058, 'number': 809} {'precision': 0.3106796116504854, 'recall': 0.2689075630252101, 'f1': 0.28828828828828823, 'number': 119} {'precision': 0.7681660899653979, 'recall': 0.8338028169014085, 'f1': 0.7996398018910401, 'number': 1065} 0.7170 0.7868 0.7502 0.8041
0.3123 11.0 110 0.7102 {'precision': 0.7045951859956237, 'recall': 0.796044499381953, 'f1': 0.7475333720255369, 'number': 809} {'precision': 0.3, 'recall': 0.3025210084033613, 'f1': 0.301255230125523, 'number': 119} {'precision': 0.7717013888888888, 'recall': 0.8347417840375587, 'f1': 0.8019846639603068, 'number': 1065} 0.7177 0.7873 0.7509 0.8003
0.2944 12.0 120 0.7214 {'precision': 0.7073707370737073, 'recall': 0.7948084054388134, 'f1': 0.7485448195576251, 'number': 809} {'precision': 0.34285714285714286, 'recall': 0.3025210084033613, 'f1': 0.32142857142857145, 'number': 119} {'precision': 0.774390243902439, 'recall': 0.8347417840375587, 'f1': 0.8034342521464076, 'number': 1065} 0.7253 0.7868 0.7548 0.8031
0.286 13.0 130 0.7283 {'precision': 0.7105263157894737, 'recall': 0.8009888751545118, 'f1': 0.7530505520046484, 'number': 809} {'precision': 0.336283185840708, 'recall': 0.31932773109243695, 'f1': 0.32758620689655166, 'number': 119} {'precision': 0.7801418439716312, 'recall': 0.8262910798122066, 'f1': 0.8025535795713634, 'number': 1065} 0.7274 0.7858 0.7554 0.7994
0.2609 14.0 140 0.7260 {'precision': 0.7144444444444444, 'recall': 0.7948084054388134, 'f1': 0.7524868344060853, 'number': 809} {'precision': 0.3217391304347826, 'recall': 0.31092436974789917, 'f1': 0.3162393162393162, 'number': 119} {'precision': 0.7796312554872695, 'recall': 0.8338028169014085, 'f1': 0.8058076225045372, 'number': 1065} 0.7279 0.7868 0.7562 0.8000
0.264 15.0 150 0.7293 {'precision': 0.7119205298013245, 'recall': 0.7972805933250927, 'f1': 0.7521865889212828, 'number': 809} {'precision': 0.30327868852459017, 'recall': 0.31092436974789917, 'f1': 0.3070539419087137, 'number': 119} {'precision': 0.7780701754385965, 'recall': 0.8328638497652582, 'f1': 0.8045351473922903, 'number': 1065} 0.7237 0.7873 0.7541 0.7994

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
22
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for shreniks/layoutlm-funsd

Finetuned
(162)
this model