shorecode's picture
Update README.md
13951a8 verified
|
raw
history blame
2.23 kB
metadata
library_name: transformers
license: apache-2.0
base_model: google/t5-efficient-tiny-nh8
tags:
  - generated_from_trainer
model-index:
  - name: t5-efficient-tiny-nh8-summarizer
    results: []

t5-efficient-tiny-nh8-summarizer

This model is a fine-tuned version of google/t5-efficient-tiny-nh8 on shorecode/summary-collection-60k-rows. It achieves the following results on the evaluation set:

  • Loss: 0.7583

Model description

A general purpose text summarizer

Intended uses & limitations

A general purpose text summarizer

Training and evaluation data

Trained and evaluated on shorecode/summary-collection-60k-rows

Training procedure

Trained using the Gradio SDK on Hugging Face Spaces using shared Zero GPU(s)

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.000000000000001e-05
  • train_batch_size: 70
  • eval_batch_size: 70
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.1522 0.2328 200 0.9863
0.9677 0.4657 400 0.9158
0.9143 0.6985 600 0.8762
0.8894 0.9313 800 0.8478
0.8586 1.1641 1000 0.8262
0.8382 1.3970 1200 0.8079
0.8198 1.6298 1400 0.7938
0.805 1.8626 1600 0.7823
0.8035 2.0955 1800 0.7727
0.7897 2.3283 2000 0.7661
0.7849 2.5611 2200 0.7607
0.7781 2.7939 2400 0.7583

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.21.0