layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6975
  • Answer: {'precision': 0.7057522123893806, 'recall': 0.788627935723115, 'f1': 0.7448920023350847, 'number': 809}
  • Header: {'precision': 0.2748091603053435, 'recall': 0.3025210084033613, 'f1': 0.288, 'number': 119}
  • Question: {'precision': 0.7804232804232805, 'recall': 0.8309859154929577, 'f1': 0.8049113233287858, 'number': 1065}
  • Overall Precision: 0.7188
  • Overall Recall: 0.7822
  • Overall F1: 0.7492
  • Overall Accuracy: 0.8031

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8422 1.0 10 1.6206 {'precision': 0.025280898876404494, 'recall': 0.022249690976514216, 'f1': 0.023668639053254437, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2301255230125523, 'recall': 0.15492957746478872, 'f1': 0.18518518518518517, 'number': 1065} 0.1277 0.0918 0.1068 0.3520
1.4509 2.0 20 1.2639 {'precision': 0.15125, 'recall': 0.14956736711990112, 'f1': 0.15040397762585456, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.465642683912692, 'recall': 0.5408450704225352, 'f1': 0.5004344048653345, 'number': 1065} 0.3420 0.3497 0.3458 0.5726
1.1141 3.0 30 0.9554 {'precision': 0.5079872204472844, 'recall': 0.5896168108776267, 'f1': 0.5457665903890161, 'number': 809} {'precision': 0.07894736842105263, 'recall': 0.025210084033613446, 'f1': 0.038216560509554146, 'number': 119} {'precision': 0.6070007955449482, 'recall': 0.7164319248826291, 'f1': 0.6571920757967269, 'number': 1065} 0.5564 0.6237 0.5881 0.7246
0.8541 4.0 40 0.7774 {'precision': 0.5957446808510638, 'recall': 0.69221260815822, 'f1': 0.6403659233847913, 'number': 809} {'precision': 0.19117647058823528, 'recall': 0.1092436974789916, 'f1': 0.13903743315508021, 'number': 119} {'precision': 0.6491228070175439, 'recall': 0.7643192488262911, 'f1': 0.7020267356619233, 'number': 1065} 0.6132 0.6959 0.6519 0.7636
0.6793 5.0 50 0.7244 {'precision': 0.6372549019607843, 'recall': 0.723114956736712, 'f1': 0.677475390851187, 'number': 809} {'precision': 0.23076923076923078, 'recall': 0.15126050420168066, 'f1': 0.18274111675126906, 'number': 119} {'precision': 0.6705516705516705, 'recall': 0.8103286384976526, 'f1': 0.733843537414966, 'number': 1065} 0.6421 0.7356 0.6857 0.7706
0.5888 6.0 60 0.6842 {'precision': 0.6595517609391676, 'recall': 0.7639060568603214, 'f1': 0.7079037800687286, 'number': 809} {'precision': 0.2597402597402597, 'recall': 0.16806722689075632, 'f1': 0.20408163265306123, 'number': 119} {'precision': 0.7196339434276207, 'recall': 0.812206572769953, 'f1': 0.7631230701367445, 'number': 1065} 0.6782 0.7541 0.7142 0.7847
0.5107 7.0 70 0.6648 {'precision': 0.6694473409801877, 'recall': 0.7935723114956736, 'f1': 0.7262443438914026, 'number': 809} {'precision': 0.24561403508771928, 'recall': 0.23529411764705882, 'f1': 0.24034334763948498, 'number': 119} {'precision': 0.7504347826086957, 'recall': 0.8103286384976526, 'f1': 0.779232505643341, 'number': 1065} 0.6896 0.7692 0.7272 0.7944
0.455 8.0 80 0.6582 {'precision': 0.6750788643533123, 'recall': 0.7935723114956736, 'f1': 0.7295454545454545, 'number': 809} {'precision': 0.25961538461538464, 'recall': 0.226890756302521, 'f1': 0.242152466367713, 'number': 119} {'precision': 0.75, 'recall': 0.8253521126760563, 'f1': 0.7858739383102369, 'number': 1065} 0.6951 0.7767 0.7336 0.7990
0.4012 9.0 90 0.6598 {'precision': 0.6955093099671413, 'recall': 0.7849196538936959, 'f1': 0.7375145180023228, 'number': 809} {'precision': 0.25203252032520324, 'recall': 0.2605042016806723, 'f1': 0.25619834710743805, 'number': 119} {'precision': 0.7566409597257926, 'recall': 0.8291079812206573, 'f1': 0.7912186379928315, 'number': 1065} 0.7031 0.7772 0.7383 0.7989
0.3934 10.0 100 0.6706 {'precision': 0.7069716775599129, 'recall': 0.8022249690976514, 'f1': 0.751592356687898, 'number': 809} {'precision': 0.27586206896551724, 'recall': 0.2689075630252101, 'f1': 0.27234042553191484, 'number': 119} {'precision': 0.7775784753363228, 'recall': 0.8140845070422535, 'f1': 0.7954128440366972, 'number': 1065} 0.7203 0.7767 0.7475 0.8052
0.3354 11.0 110 0.6780 {'precision': 0.7046688382193268, 'recall': 0.8022249690976514, 'f1': 0.7502890173410405, 'number': 809} {'precision': 0.272, 'recall': 0.2857142857142857, 'f1': 0.27868852459016397, 'number': 119} {'precision': 0.7675628794449263, 'recall': 0.8309859154929577, 'f1': 0.7980162308385933, 'number': 1065} 0.7131 0.7868 0.7481 0.8028
0.3187 12.0 120 0.6842 {'precision': 0.7097130242825607, 'recall': 0.7948084054388134, 'f1': 0.7498542274052479, 'number': 809} {'precision': 0.26717557251908397, 'recall': 0.29411764705882354, 'f1': 0.28, 'number': 119} {'precision': 0.7742504409171076, 'recall': 0.8244131455399061, 'f1': 0.7985447930877672, 'number': 1065} 0.7167 0.7807 0.7474 0.8021
0.3007 13.0 130 0.6944 {'precision': 0.704225352112676, 'recall': 0.8034610630407911, 'f1': 0.7505773672055426, 'number': 809} {'precision': 0.2833333333333333, 'recall': 0.2857142857142857, 'f1': 0.2845188284518828, 'number': 119} {'precision': 0.7791519434628975, 'recall': 0.828169014084507, 'f1': 0.8029130632680928, 'number': 1065} 0.72 0.7858 0.7514 0.8022
0.2805 14.0 140 0.7007 {'precision': 0.7126948775055679, 'recall': 0.7911001236093943, 'f1': 0.7498535442296427, 'number': 809} {'precision': 0.2695035460992908, 'recall': 0.31932773109243695, 'f1': 0.2923076923076923, 'number': 119} {'precision': 0.7805530776092774, 'recall': 0.8215962441314554, 'f1': 0.8005489478499542, 'number': 1065} 0.7190 0.7792 0.7479 0.8010
0.2795 15.0 150 0.6975 {'precision': 0.7057522123893806, 'recall': 0.788627935723115, 'f1': 0.7448920023350847, 'number': 809} {'precision': 0.2748091603053435, 'recall': 0.3025210084033613, 'f1': 0.288, 'number': 119} {'precision': 0.7804232804232805, 'recall': 0.8309859154929577, 'f1': 0.8049113233287858, 'number': 1065} 0.7188 0.7822 0.7492 0.8031

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3
Downloads last month
104
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for shivaramnerella/layoutlm-funsd

Finetuned
(149)
this model