license: apache-2.0
base_model:
  - OpenPipe/mistral-ft-optimized-1218
  - mlabonne/NeuralHermes-2.5-Mistral-7B
tags:
  - merge
  - mergekit
  - lazymergekit
  - OpenPipe/mistral-ft-optimized-1218
  - mlabonne/NeuralHermes-2.5-Mistral-7B
---

# NeuralPipe-7B-slerp
NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/%7B%7B%20model%20%7D%7D)
* [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/%7B%7B%20model%20%7D%7D)

## 🧩 Configuration

```yaml

slices:

  • sources:
    • model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32]
    • model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32]
  • merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16

    ## 💻 Usage

    ```python
    !pip install -qU transformers accelerate

    from transformers import AutoTokenizer
    import transformers
    import torch

    model = "shism/NeuralPipe-7B-slerp"
    messages = [{"role": "user", "content": "What is a large language model?"}]

    tokenizer = AutoTokenizer.from_pretrained(model)
    prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

    pipeline = transformers.pipeline(
        "text-generation",
        model=model,
        torch_dtype=torch.float16,
        device_map="auto",
    )

    outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
    print(outputs[0]["generated_text"])
    ```
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.