|
--- |
|
library_name: transformers |
|
license: cc-by-nc-4.0 |
|
base_model: MCG-NJU/videomae-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
model-index: |
|
- name: videomae-base-finetuned-ucf-crimevbinaryv4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videomae-base-finetuned-ucf-crimevbinaryv4 |
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8055 |
|
- Accuracy: 0.8571 |
|
- Precision: 0.8571 |
|
- Recall: 0.8571 |
|
- Auc: 0.9328 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.4783 | 1.0 | 175 | 0.5235 | 0.78 | 0.7825 | 0.78 | 0.8269 | |
|
| 0.6121 | 2.0 | 350 | 0.5076 | 0.816 | 0.8179 | 0.816 | 0.8518 | |
|
| 0.3305 | 3.0 | 525 | 0.3910 | 0.856 | 0.8660 | 0.856 | 0.9222 | |
|
| 0.2431 | 4.0 | 700 | 0.8684 | 0.728 | 0.8190 | 0.728 | 0.8933 | |
|
| 0.3337 | 5.0 | 875 | 0.5653 | 0.808 | 0.8266 | 0.808 | 0.9149 | |
|
| 0.1768 | 6.0 | 1050 | 0.4709 | 0.88 | 0.8803 | 0.88 | 0.9311 | |
|
| 0.111 | 7.0 | 1225 | 0.6650 | 0.848 | 0.8600 | 0.848 | 0.9263 | |
|
| 0.1507 | 8.0 | 1400 | 0.6151 | 0.852 | 0.8522 | 0.852 | 0.9232 | |
|
| 0.1771 | 9.0 | 1575 | 0.6924 | 0.872 | 0.8729 | 0.872 | 0.9280 | |
|
| 0.13 | 10.0 | 1750 | 0.6670 | 0.884 | 0.8846 | 0.884 | 0.9304 | |
|
| 0.0062 | 11.0 | 1925 | 0.8110 | 0.86 | 0.8621 | 0.86 | 0.9198 | |
|
| 0.0008 | 12.0 | 2100 | 0.8139 | 0.876 | 0.8768 | 0.876 | 0.9235 | |
|
| 0.0004 | 13.0 | 2275 | 0.8727 | 0.868 | 0.8711 | 0.868 | 0.9258 | |
|
| 0.0005 | 14.0 | 2450 | 1.0055 | 0.86 | 0.8658 | 0.86 | 0.9250 | |
|
| 0.0002 | 15.0 | 2625 | 0.9728 | 0.864 | 0.8677 | 0.864 | 0.9269 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0.dev0 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|