my_model / README.md
sergiomvazq's picture
End of training
7e4e529 verified
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: my_model
    results: []

my_model

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1746
  • Accuracy: 0.9589
  • F1: 0.8034
  • Precision: 1.0
  • Recall: 0.6714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 14 0.4759 0.875 0.0 0.0 0.0
No log 2.0 28 0.3609 0.875 0.0 0.0 0.0
No log 3.0 42 0.3394 0.875 0.0 0.0 0.0
No log 4.0 56 0.3070 0.875 0.0 0.0 0.0
No log 5.0 70 0.2768 0.875 0.0 0.0 0.0
No log 6.0 84 0.2432 0.8893 0.2051 1.0 0.1143
No log 7.0 98 0.2159 0.9071 0.4091 1.0 0.2571
No log 8.0 112 0.1946 0.9429 0.7037 1.0 0.5429
No log 9.0 126 0.1798 0.9554 0.7826 1.0 0.6429
No log 10.0 140 0.1746 0.9589 0.8034 1.0 0.6714

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1