xlm-roberta-large-finetuned-augmentation-LUNAR
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3654
- F1: 0.1245
- Roc Auc: 0.5
- Accuracy: 0.4224
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.3516 | 1.0 | 76 | 0.3472 | 0.0 | 0.5 | 0.3234 |
0.3331 | 2.0 | 152 | 0.3615 | 0.0 | 0.5 | 0.3234 |
0.339 | 3.0 | 228 | 0.3456 | 0.0 | 0.5 | 0.3234 |
0.3207 | 4.0 | 304 | 0.3551 | 0.0 | 0.5 | 0.3234 |
0.3164 | 5.0 | 380 | 0.3654 | 0.1245 | 0.5 | 0.4224 |
0.3353 | 6.0 | 456 | 0.3484 | 0.0 | 0.5 | 0.3234 |
0.3387 | 7.0 | 532 | 0.3475 | 0.1245 | 0.5 | 0.4224 |
0.3107 | 8.0 | 608 | 0.3497 | 0.0 | 0.5 | 0.3234 |
0.3503 | 9.0 | 684 | 0.3450 | 0.0 | 0.5 | 0.3234 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for sercetexam9/xlm-roberta-large-finetuned-augmentation-LUNAR
Base model
FacebookAI/xlm-roberta-large