afro-xlmr-base-sun-finetuned-augmentation-LUNAR
This model is a fine-tuned version of Davlan/afro-xlmr-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3556
- F1: 0.3987
- Roc Auc: 0.6273
- Accuracy: 0.5156
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.6264 | 1.0 | 57 | 0.4136 | 0.1420 | 0.5 | 0.5067 |
0.382 | 2.0 | 114 | 0.3981 | 0.1420 | 0.5 | 0.5067 |
0.4333 | 3.0 | 171 | 0.3526 | 0.2407 | 0.5539 | 0.5244 |
0.3472 | 4.0 | 228 | 0.3299 | 0.2767 | 0.5946 | 0.5511 |
0.325 | 5.0 | 285 | 0.3186 | 0.2669 | 0.6007 | 0.5156 |
0.3188 | 6.0 | 342 | 0.3278 | 0.2681 | 0.5975 | 0.5289 |
0.2909 | 7.0 | 399 | 0.3446 | 0.2675 | 0.5809 | 0.5422 |
0.2579 | 8.0 | 456 | 0.3238 | 0.2935 | 0.6150 | 0.5289 |
0.2779 | 9.0 | 513 | 0.3341 | 0.2891 | 0.6043 | 0.52 |
0.2547 | 10.0 | 570 | 0.3615 | 0.3142 | 0.5980 | 0.52 |
0.2266 | 11.0 | 627 | 0.3394 | 0.3499 | 0.6212 | 0.5289 |
0.2258 | 12.0 | 684 | 0.3587 | 0.3515 | 0.6061 | 0.5022 |
0.2159 | 13.0 | 741 | 0.3402 | 0.3677 | 0.6297 | 0.5333 |
0.2163 | 14.0 | 798 | 0.3485 | 0.3678 | 0.6198 | 0.4978 |
0.2007 | 15.0 | 855 | 0.3556 | 0.3987 | 0.6273 | 0.5156 |
0.1955 | 16.0 | 912 | 0.3552 | 0.3724 | 0.6195 | 0.5022 |
0.1806 | 17.0 | 969 | 0.3619 | 0.3744 | 0.6195 | 0.5111 |
0.189 | 18.0 | 1026 | 0.3559 | 0.3850 | 0.6227 | 0.4889 |
0.1837 | 19.0 | 1083 | 0.3561 | 0.3868 | 0.6241 | 0.4933 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 38
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.