afro-xlmr-base-amh-finetuned-augmentation-LUNAR
This model is a fine-tuned version of Davlan/afro-xlmr-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3598
- F1: 0.7180
- Roc Auc: 0.8216
- Accuracy: 0.5711
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.3732 | 1.0 | 238 | 0.3390 | 0.3871 | 0.6361 | 0.3741 |
0.3078 | 2.0 | 476 | 0.2957 | 0.4993 | 0.6893 | 0.4573 |
0.255 | 3.0 | 714 | 0.3038 | 0.4991 | 0.6918 | 0.4489 |
0.2146 | 4.0 | 952 | 0.2743 | 0.5751 | 0.7355 | 0.4889 |
0.1812 | 5.0 | 1190 | 0.2834 | 0.5907 | 0.7533 | 0.4932 |
0.1566 | 6.0 | 1428 | 0.2816 | 0.6564 | 0.7837 | 0.5153 |
0.1454 | 7.0 | 1666 | 0.2748 | 0.6717 | 0.7939 | 0.5427 |
0.1151 | 8.0 | 1904 | 0.2930 | 0.6693 | 0.8009 | 0.5469 |
0.0807 | 9.0 | 2142 | 0.3085 | 0.6799 | 0.7997 | 0.5458 |
0.0643 | 10.0 | 2380 | 0.3011 | 0.6978 | 0.8078 | 0.5574 |
0.0626 | 11.0 | 2618 | 0.3296 | 0.6945 | 0.8138 | 0.5522 |
0.0461 | 12.0 | 2856 | 0.3366 | 0.6896 | 0.8001 | 0.5564 |
0.0342 | 13.0 | 3094 | 0.3503 | 0.6893 | 0.8178 | 0.5522 |
0.0301 | 14.0 | 3332 | 0.3453 | 0.7036 | 0.8136 | 0.5669 |
0.0209 | 15.0 | 3570 | 0.3575 | 0.7135 | 0.8176 | 0.5680 |
0.0171 | 16.0 | 3808 | 0.3632 | 0.7042 | 0.8158 | 0.5616 |
0.017 | 17.0 | 4046 | 0.3598 | 0.7180 | 0.8216 | 0.5711 |
0.0223 | 18.0 | 4284 | 0.3610 | 0.7065 | 0.8170 | 0.5701 |
0.0207 | 19.0 | 4522 | 0.3622 | 0.7153 | 0.8212 | 0.5680 |
0.0179 | 20.0 | 4760 | 0.3629 | 0.7117 | 0.8213 | 0.5669 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 29
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.