afro-xlmr-base-afr-finetuned-augmentation-LUNAR
This model is a fine-tuned version of Davlan/afro-xlmr-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2755
- F1: 0.5012
- Roc Auc: 0.6931
- Accuracy: 0.6908
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.4289 | 1.0 | 76 | 0.3283 | 0.0 | 0.5 | 0.3520 |
0.3509 | 2.0 | 152 | 0.3160 | 0.1005 | 0.5277 | 0.4836 |
0.2864 | 3.0 | 228 | 0.2631 | 0.2532 | 0.5927 | 0.5855 |
0.2383 | 4.0 | 304 | 0.2411 | 0.2210 | 0.5799 | 0.5559 |
0.1902 | 5.0 | 380 | 0.2632 | 0.2619 | 0.5909 | 0.5921 |
0.1545 | 6.0 | 456 | 0.2466 | 0.3297 | 0.6281 | 0.6612 |
0.1408 | 7.0 | 532 | 0.2407 | 0.3469 | 0.6253 | 0.6447 |
0.1087 | 8.0 | 608 | 0.2463 | 0.3989 | 0.6645 | 0.6809 |
0.0743 | 9.0 | 684 | 0.2497 | 0.4086 | 0.6561 | 0.6711 |
0.0832 | 10.0 | 760 | 0.2581 | 0.4063 | 0.6516 | 0.6908 |
0.0599 | 11.0 | 836 | 0.2583 | 0.4992 | 0.6911 | 0.7007 |
0.0553 | 12.0 | 912 | 0.2755 | 0.5012 | 0.6931 | 0.6908 |
0.0497 | 13.0 | 988 | 0.2741 | 0.4253 | 0.6688 | 0.6809 |
0.029 | 14.0 | 1064 | 0.2864 | 0.4033 | 0.6529 | 0.6776 |
0.0349 | 15.0 | 1140 | 0.3034 | 0.4742 | 0.6808 | 0.6776 |
0.0249 | 16.0 | 1216 | 0.2889 | 0.4089 | 0.6608 | 0.6678 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 32
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.