File size: 2,324 Bytes
332951a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: sentiment-10Epochs-3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-10Epochs-3
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7703
- Accuracy: 0.8568
- F1: 0.8526
- Precision: 0.8787
- Recall: 0.8279
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.3637 | 1.0 | 7088 | 0.3830 | 0.8571 | 0.8418 | 0.9429 | 0.7603 |
| 0.37 | 2.0 | 14176 | 0.4128 | 0.8676 | 0.8582 | 0.9242 | 0.8010 |
| 0.325 | 3.0 | 21264 | 0.4656 | 0.8737 | 0.8664 | 0.9189 | 0.8197 |
| 0.2948 | 4.0 | 28352 | 0.4575 | 0.8703 | 0.8652 | 0.9007 | 0.8324 |
| 0.3068 | 5.0 | 35440 | 0.4751 | 0.8705 | 0.8653 | 0.9016 | 0.8317 |
| 0.2945 | 6.0 | 42528 | 0.5509 | 0.8668 | 0.8618 | 0.8956 | 0.8305 |
| 0.2568 | 7.0 | 49616 | 0.6201 | 0.8632 | 0.8567 | 0.8994 | 0.8178 |
| 0.2107 | 8.0 | 56704 | 0.6836 | 0.8614 | 0.8576 | 0.8819 | 0.8346 |
| 0.1966 | 9.0 | 63792 | 0.7030 | 0.8583 | 0.8532 | 0.8848 | 0.8238 |
| 0.1675 | 10.0 | 70880 | 0.7703 | 0.8568 | 0.8526 | 0.8787 | 0.8279 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0
- Datasets 2.0.0
- Tokenizers 0.11.6
|