File size: 2,324 Bytes
332951a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: sentiment-10Epochs-3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sentiment-10Epochs-3

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7703
- Accuracy: 0.8568
- F1: 0.8526
- Precision: 0.8787
- Recall: 0.8279

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.3637        | 1.0   | 7088  | 0.3830          | 0.8571   | 0.8418 | 0.9429    | 0.7603 |
| 0.37          | 2.0   | 14176 | 0.4128          | 0.8676   | 0.8582 | 0.9242    | 0.8010 |
| 0.325         | 3.0   | 21264 | 0.4656          | 0.8737   | 0.8664 | 0.9189    | 0.8197 |
| 0.2948        | 4.0   | 28352 | 0.4575          | 0.8703   | 0.8652 | 0.9007    | 0.8324 |
| 0.3068        | 5.0   | 35440 | 0.4751          | 0.8705   | 0.8653 | 0.9016    | 0.8317 |
| 0.2945        | 6.0   | 42528 | 0.5509          | 0.8668   | 0.8618 | 0.8956    | 0.8305 |
| 0.2568        | 7.0   | 49616 | 0.6201          | 0.8632   | 0.8567 | 0.8994    | 0.8178 |
| 0.2107        | 8.0   | 56704 | 0.6836          | 0.8614   | 0.8576 | 0.8819    | 0.8346 |
| 0.1966        | 9.0   | 63792 | 0.7030          | 0.8583   | 0.8532 | 0.8848    | 0.8238 |
| 0.1675        | 10.0  | 70880 | 0.7703          | 0.8568   | 0.8526 | 0.8787    | 0.8279 |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.0
- Datasets 2.0.0
- Tokenizers 0.11.6