sepidmnorozy commited on
Commit
332951a
·
1 Parent(s): 8ad5f2f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: sentiment-10Epochs-3
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # sentiment-10Epochs-3
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.7703
23
+ - Accuracy: 0.8568
24
+ - F1: 0.8526
25
+ - Precision: 0.8787
26
+ - Recall: 0.8279
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 0.3637 | 1.0 | 7088 | 0.3830 | 0.8571 | 0.8418 | 0.9429 | 0.7603 |
58
+ | 0.37 | 2.0 | 14176 | 0.4128 | 0.8676 | 0.8582 | 0.9242 | 0.8010 |
59
+ | 0.325 | 3.0 | 21264 | 0.4656 | 0.8737 | 0.8664 | 0.9189 | 0.8197 |
60
+ | 0.2948 | 4.0 | 28352 | 0.4575 | 0.8703 | 0.8652 | 0.9007 | 0.8324 |
61
+ | 0.3068 | 5.0 | 35440 | 0.4751 | 0.8705 | 0.8653 | 0.9016 | 0.8317 |
62
+ | 0.2945 | 6.0 | 42528 | 0.5509 | 0.8668 | 0.8618 | 0.8956 | 0.8305 |
63
+ | 0.2568 | 7.0 | 49616 | 0.6201 | 0.8632 | 0.8567 | 0.8994 | 0.8178 |
64
+ | 0.2107 | 8.0 | 56704 | 0.6836 | 0.8614 | 0.8576 | 0.8819 | 0.8346 |
65
+ | 0.1966 | 9.0 | 63792 | 0.7030 | 0.8583 | 0.8532 | 0.8848 | 0.8238 |
66
+ | 0.1675 | 10.0 | 70880 | 0.7703 | 0.8568 | 0.8526 | 0.8787 | 0.8279 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.18.0
72
+ - Pytorch 1.10.0
73
+ - Datasets 2.0.0
74
+ - Tokenizers 0.11.6