AttackGroup-MPNET / README.md
selfconstruct3d's picture
Update README.md
63d0dd3 verified
|
raw
history blame
8.51 kB
metadata
library_name: transformers
tags:
  - cybersecurity
  - mpnet
  - classification
  - fine-tuned

AttackGroup-MPNET - Model Card for MPNet Cybersecurity Classifier

This is a fine-tuned MPNet model specialized for classifying cybersecurity threat groups based on textual descriptions of their tactics and techniques.

Model Details

Model Description

This model is a fine-tuned MPNet classifier specialized in categorizing cybersecurity threat groups based on textual descriptions of their tactics, techniques, and procedures (TTPs).

  • Developed by: Dženan Hamzić
  • Model type: Transformer-based classification model (MPNet)
  • Language(s) (NLP): English
  • License: Apache-2.0
  • Finetuned from model: microsoft/mpnet-base (with intermediate MLM fine-tuning)

Model Sources

Uses

Direct Use

This model classifies textual cybersecurity descriptions into known cybersecurity threat groups.

Downstream Use

Integration into Cyber Threat Intelligence platforms, SOC incident analysis tools, and automated threat detection systems.

Out-of-Scope Use

  • General language tasks unrelated to cybersecurity
  • Tasks outside the cybersecurity domain

Bias, Risks, and Limitations

This model specializes in cybersecurity contexts. Predictions for unrelated contexts may be inaccurate.

Recommendations

Always verify predictions with cybersecurity analysts before using in critical decision-making scenarios.

How to Get Started with the Model (Classification)

import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.optim as optim
import numpy as np
from huggingface_hub import hf_hub_download
import json

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


label_to_groupid_file = hf_hub_download(
    repo_id="selfconstruct3d/AttackGroup-MPNET",
    filename="label_to_groupid.json"
)

with open(label_to_groupid_file, "r") as f:
    label_to_groupid = json.load(f)

# Load explicitly your fine-tuned MPNet model
classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET", num_labels=len(label_to_groupid)).to(device)

# Load explicitly your tokenizer
tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")

def predict_group(sentence):
    classifier_model.eval()
    encoding = tokenizer(
        sentence,
        truncation=True,
        padding="max_length",
        max_length=128,
        return_tensors="pt"
    )
    input_ids = encoding["input_ids"].to(device)
    attention_mask = encoding["attention_mask"].to(device)

    with torch.no_grad():
        outputs = classifier_model(input_ids=input_ids, attention_mask=attention_mask)
        logits = outputs.logits
        predicted_label = torch.argmax(logits, dim=1).cpu().item()

    predicted_groupid = label_to_groupid[str(predicted_label)]
    return predicted_groupid

# Example usage explicitly:
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
predicted_class = predict_group(sentence)
print(f"Predicted GroupID: {predicted_class}")

Predicted GroupID: G0001

How to Get Started with the Model (Embeddings)

import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import hf_hub_download
import json

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


label_to_groupid_file = hf_hub_download(
    repo_id="selfconstruct3d/AttackGroup-MPNET",
    filename="label_to_groupid.json"
)

with open(label_to_groupid_file, "r") as f:
    label_to_groupid = json.load(f)


# Load your fine-tuned classification model
model_name = "selfconstruct3d/AttackGroup-MPNET"
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier_model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=len(label_to_groupid)).to(device)

def get_embedding(sentence):
    classifier_model.eval()

    encoding = tokenizer(
        sentence,
        truncation=True,
        padding="max_length",
        max_length=128,
        return_tensors="pt"
    )
    input_ids = encoding["input_ids"].to(device)
    attention_mask = encoding["attention_mask"].to(device)

    with torch.no_grad():
        outputs = classifier_model.mpnet(input_ids=input_ids, attention_mask=attention_mask)
        cls_embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy().flatten()

    return cls_embedding

# Example explicitly:
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
embedding = get_embedding(sentence)
print("Embedding shape:", embedding.shape)
print("Embedding values:", embedding)

Training Details

Training Data

To be anounced...

Training Procedure

  • Fine-tuned from: MLM fine-tuned MPNet ("mpnet_mlm_cyber_finetuned-v2")
  • Epochs: 32
  • Learning rate: 5e-6
  • Batch size: 16

Evaluation

Testing Data, Factors & Metrics

  • Testing Data: Stratified sample from original dataset.
  • Metrics: Accuracy, Weighted F1 Score

Results

Metric Value
Cl. Accuracy (Test) 0.9564
W. F1 Score (Test) 0.9577

Evaluation Results

Model Embedding Variability Accuracy
Original MPNet 0.085554 0.9964
MLM Fine-tuned MPNet 0.034983 0.6536
** AttackGroup-MPNET ** 0.193065 0.9508
SecBERT 0.591303 0.9886
ATTACK-BERT 0.096108 0.9678
SecureBERT 0.007100 0.4931

Single Prediction Example


import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.optim as optim
import numpy as np
from huggingface_hub import hf_hub_download
import json

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load explicitly your fine-tuned MPNet model
classifier_model = AutoModelForSequenceClassification.from_pretrained("selfconstruct3d/AttackGroup-MPNET").to(device)

# Load explicitly your tokenizer
tokenizer = AutoTokenizer.from_pretrained("selfconstruct3d/AttackGroup-MPNET")


label_to_groupid_file = hf_hub_download(
    repo_id="selfconstruct3d/AttackGroup-MPNET",
    filename="label_to_groupid.json"
)

with open(label_to_groupid_file, "r") as f:
    label_to_groupid = json.load(f)

def predict_group(sentence):
    classifier_model.eval()
    encoding = tokenizer(
        sentence,
        truncation=True,
        padding="max_length",
        max_length=128,
        return_tensors="pt"
    )
    input_ids = encoding["input_ids"].to(device)
    attention_mask = encoding["attention_mask"].to(device)

    with torch.no_grad():
        outputs = classifier_model(input_ids=input_ids, attention_mask=attention_mask)
        logits = outputs.logits
        predicted_label = torch.argmax(logits, dim=1).cpu().item()

    predicted_groupid = label_to_groupid[str(predicted_label)]
    return predicted_groupid

# Example usage explicitly:
sentence = "APT38 has used phishing emails with malicious links to distribute malware."
predicted_class = predict_group(sentence)
print(f"Predicted GroupID: {predicted_class}")

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator.

  • Hardware Type: [To be filled by user]
  • Hours used: [To be filled by user]
  • Cloud Provider: [To be filled by user]
  • Compute Region: [To be filled by user]
  • Carbon Emitted: [To be filled by user]

Technical Specifications

Model Architecture

  • MPNet architecture with classification head (768 -> 512 -> num_labels)
  • Last 10 transformer layers fine-tuned explicitly

Environmental Impact

Carbon emissions should be estimated using the Machine Learning Impact calculator.

Model Card Authors

  • Dženan Hamzić

Model Card Contact

  • [More Information Needed]