|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- dyngnosis/function_names_v2 |
|
--- |
|
|
|
A simple Phi-2 model fine-tuned on a function identification task of disassembled binary functions. It will output function names as a JSON object. You can use the following code to identify a function name: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"seanmor5/phi-2-function-identification", |
|
attn_implementation="flash_attention_2", |
|
torch_dtype=torch.bfloat16, |
|
) |
|
model.to(torch.device("cuda")) |
|
tokenizer = AutoTokenizer.from_pretrained("seanmor5/phi-2-function-identification") |
|
|
|
def prompt(code): |
|
return ( |
|
"Input: Given the following disassembled code, provide a descriptive" |
|
+ " function name for the code. Your function name should" |
|
+ " accurately describe the purpose of the code. It should" |
|
+ " be formatted in C style with lowercase and snakecase." |
|
+ f" Only output the name as valid JSON, e.g. {json.dumps({'name': 'function_name'})}" |
|
+ f"\nCode: {code}\nOutput:" |
|
) |
|
|
|
def identify_function(code): |
|
eos_tokens = tokenizer.convert_tokens_to_ids(['"}', "<|endoftext|>"]) |
|
inputs = tokenizer(prompt(func), return_tensors="pt") |
|
inputs.to(torch.device("cuda")) |
|
|
|
outputs = model.generate(**inputs, max_new_tokens=64, eos_token_id=eos_tokens) |
|
text = tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1] :])[0] |
|
return text |
|
|
|
func = """ |
|
void fcn.140030b80(ulong param_1, ulong param_2, ulong param_3) { |
|
ulong uVar1; uVar1 = fcn.140030ae0(param_3); |
|
fcn.14002efc0(param_1, param_2, uVar1); return; |
|
} |
|
""" |
|
|
|
print(identify_function(func)) |
|
``` |
|
|
|
The model tends to repeat itself excessively, so you should set the EOS token to `"}` when generating. |