See axolotl config
axolotl version: 0.8.0.dev0
base_model: meta-llama/Llama-3.1-8B-Instruct
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: seacorn/llama3.1-8b-reasoning-summarizer
load_in_8bit: true
load_in_4bit: false
strict: false
seed: 42
datasets:
- path: output.jsonl
type: chat_template
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name: llama3.1-8b-reasoning-summarizer
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_ratio: 0.05
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
llama3.1-8b-reasoning-summarizer
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the seacorn/news-summarizer-reasoner dataset. It achieves the following results on the evaluation set:
- Loss: 1.1173
Intended uses & limitations
The model performs best in summarization tasks, specifically in English and maybe Chinese. The model provides reasoning ON/OFF via system prompt trigger, all instructions should be contained within the user prompt.
Reasoning on example:
messages = [
{"role": "system", "content": "reasoning on"},
{"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."}
]
# output
- Elon Musk's xAI acquires X ...
Reasoning off example:
messages = [
{"role": "system", "content": "reasoning off"},
{"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."}
]
# output
<think>
Okay, I need to summarize this article into 5 bullet points, each with a maximum of 20 words. ...
</think>
- Musk's xAI acquires X ...
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 56
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.0396 | 0.0018 | 1 | 1.7982 |
1.3908 | 0.2506 | 141 | 1.2241 |
1.8534 | 0.5011 | 282 | 1.1842 |
1.5745 | 0.7517 | 423 | 1.1560 |
0.9261 | 1.0018 | 564 | 1.1288 |
1.2359 | 1.2523 | 705 | 1.1344 |
1.1835 | 1.5029 | 846 | 1.1223 |
0.9898 | 1.7534 | 987 | 1.1173 |
Framework versions
- PEFT 0.15.0
- Transformers 4.50.0
- Pytorch 2.5.1+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for seacorn/llama3.1-8b-reasoning-summarizer
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct