Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: meta-llama/Llama-3.1-8B-Instruct
# optionally might have model_type or tokenizer_type
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: seacorn/llama3.1-8b-reasoning-summarizer

load_in_8bit: true
load_in_4bit: false
strict: false

seed: 42

datasets:
  - path: output.jsonl
    type: chat_template
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save:
  - embed_tokens
  - lm_head

wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name: llama3.1-8b-reasoning-summarizer
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:

warmup_ratio: 0.05
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 5
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
   pad_token: <|end_of_text|>

llama3.1-8b-reasoning-summarizer

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-Instruct on the seacorn/news-summarizer-reasoner dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1173

Intended uses & limitations

The model performs best in summarization tasks, specifically in English and maybe Chinese. The model provides reasoning ON/OFF via system prompt trigger, all instructions should be contained within the user prompt.

Reasoning on example:

messages = [
    {"role": "system", "content": "reasoning on"},
    {"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."}
]

# output
- Elon Musk's xAI acquires X ...

Reasoning off example:

messages = [
    {"role": "system", "content": "reasoning off"},
    {"role": "user", "content": "Summarize the following into 5 bullet points, each with 20 words max.\n\nMarch 28 (Reuters) -..."}
]

# output
<think>
Okay, I need to summarize this article into 5 bullet points, each with a maximum of 20 words. ...
</think>

- Musk's xAI acquires X ...

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 56
  • num_epochs: 2.0

Training results

Training Loss Epoch Step Validation Loss
2.0396 0.0018 1 1.7982
1.3908 0.2506 141 1.2241
1.8534 0.5011 282 1.1842
1.5745 0.7517 423 1.1560
0.9261 1.0018 564 1.1288
1.2359 1.2523 705 1.1344
1.1835 1.5029 846 1.1223
0.9898 1.7534 987 1.1173

Framework versions

  • PEFT 0.15.0
  • Transformers 4.50.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
12
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for seacorn/llama3.1-8b-reasoning-summarizer

Finetuned
(1046)
this model

Dataset used to train seacorn/llama3.1-8b-reasoning-summarizer