license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-regression
widget:
structuredData:
Height:
- 11.52
- 12.48
- 12.3778
Length1:
- 23.2
- 24
- 23.9
Length2:
- 25.4
- 26.3
- 26.5
Length3:
- 30
- 31.2
- 31.1
Species:
- Bream
- Bream
- Bream
Width:
- 4.02
- 4.3056
- 4.6961
Model description
This is a GradientBoostingRegressor on a fish dataset.
Intended uses & limitations
This model is intended for educational purposes.
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('columntransformer', ColumnTransformer(remainder='passthrough', |
transformers=[('onehotencoder',
OneHotEncoder(handle_unknown='ignore',
sparse=False),
<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])), ('gradientboostingregressor', GradientBoostingRegressor(random_state=42))] |
| verbose | False | | columntransformer | ColumnTransformer(remainder='passthrough', transformers=[('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False), <sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)]) | | gradientboostingregressor | GradientBoostingRegressor(random_state=42) | | columntransformer__n_jobs | | | columntransformer__remainder | passthrough | | columntransformer__sparse_threshold | 0.3 | | columntransformer__transformer_weights | | | columntransformer__transformers | [('onehotencoder', OneHotEncoder(handle_unknown='ignore', sparse=False), <sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)] | | columntransformer__verbose | False | | columntransformer__verbose_feature_names_out | True | | columntransformer__onehotencoder | OneHotEncoder(handle_unknown='ignore', sparse=False) | | columntransformer__onehotencoder__categories | auto | | columntransformer__onehotencoder__drop | | | columntransformer__onehotencoder__dtype | <class 'numpy.float64'> | | columntransformer__onehotencoder__handle_unknown | ignore | | columntransformer__onehotencoder__sparse | False | | gradientboostingregressor__alpha | 0.9 | | gradientboostingregressor__ccp_alpha | 0.0 | | gradientboostingregressor__criterion | friedman_mse | | gradientboostingregressor__init | | | gradientboostingregressor__learning_rate | 0.1 | | gradientboostingregressor__loss | squared_error | | gradientboostingregressor__max_depth | 3 | | gradientboostingregressor__max_features | | | gradientboostingregressor__max_leaf_nodes | | | gradientboostingregressor__min_impurity_decrease | 0.0 | | gradientboostingregressor__min_samples_leaf | 1 | | gradientboostingregressor__min_samples_split | 2 | | gradientboostingregressor__min_weight_fraction_leaf | 0.0 | | gradientboostingregressor__n_estimators | 100 | | gradientboostingregressor__n_iter_no_change | | | gradientboostingregressor__random_state | 42 | | gradientboostingregressor__subsample | 1.0 | | gradientboostingregressor__tol | 0.0001 | | gradientboostingregressor__validation_fraction | 0.1 | | gradientboostingregressor__verbose | 0 | | gradientboostingregressor__warm_start | False |
Model Plot
The model plot is below.
Pipeline(steps=[('columntransformer',ColumnTransformer(remainder='passthrough',transformers=[('onehotencoder',OneHotEncoder(handle_unknown='ignore',sparse=False),<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])),('gradientboostingregressor',GradientBoostingRegressor(random_state=42))])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('columntransformer',ColumnTransformer(remainder='passthrough',transformers=[('onehotencoder',OneHotEncoder(handle_unknown='ignore',sparse=False),<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])),('gradientboostingregressor',GradientBoostingRegressor(random_state=42))])
ColumnTransformer(remainder='passthrough',transformers=[('onehotencoder',OneHotEncoder(handle_unknown='ignore',sparse=False),<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>)])
<sklearn.compose._column_transformer.make_column_selector object at 0x000001E750BBC6A0>
OneHotEncoder(handle_unknown='ignore', sparse=False)
['Length1', 'Length2', 'Length3', 'Height', 'Width']
passthrough
GradientBoostingRegressor(random_state=42)
##Â Evaluation Results
You can find the details about evaluation process and the evaluation results.
Metric | Value |
---|
How to Get Started with the Model
Use the code below to get started with the model.
Click to expand
[More Information Needed]
Model Card Authors
This model card is written by following authors:
Brenden Connors
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]