layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7132
  • Answer: {'precision': 0.712403951701427, 'recall': 0.8022249690976514, 'f1': 0.7546511627906977, 'number': 809}
  • Header: {'precision': 0.3492063492063492, 'recall': 0.3697478991596639, 'f1': 0.35918367346938773, 'number': 119}
  • Question: {'precision': 0.7774822695035462, 'recall': 0.8234741784037559, 'f1': 0.7998176014591885, 'number': 1065}
  • Overall Precision: 0.7252
  • Overall Recall: 0.7878
  • Overall F1: 0.7552
  • Overall Accuracy: 0.8021

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8005 1.0 10 1.5968 {'precision': 0.016826923076923076, 'recall': 0.00865265760197775, 'f1': 0.011428571428571429, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2391304347826087, 'recall': 0.07230046948356808, 'f1': 0.1110310021629416, 'number': 1065} 0.1138 0.0421 0.0615 0.3226
1.457 2.0 20 1.2316 {'precision': 0.15958668197474168, 'recall': 0.17181705809641531, 'f1': 0.16547619047619047, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4478951000690131, 'recall': 0.6093896713615023, 'f1': 0.5163086714399363, 'number': 1065} 0.3397 0.3954 0.3654 0.6040
1.0982 3.0 30 0.9236 {'precision': 0.5125260960334029, 'recall': 0.6069221260815822, 'f1': 0.5557441992076967, 'number': 809} {'precision': 0.0625, 'recall': 0.008403361344537815, 'f1': 0.014814814814814815, 'number': 119} {'precision': 0.595292331055429, 'recall': 0.7361502347417841, 'f1': 0.6582703610411419, 'number': 1065} 0.5570 0.6402 0.5957 0.7149
0.8415 4.0 40 0.7922 {'precision': 0.6117021276595744, 'recall': 0.7107540173053152, 'f1': 0.6575185820468838, 'number': 809} {'precision': 0.06, 'recall': 0.025210084033613446, 'f1': 0.03550295857988166, 'number': 119} {'precision': 0.6822916666666666, 'recall': 0.7380281690140845, 'f1': 0.7090663058186739, 'number': 1065} 0.6368 0.6844 0.6597 0.7536
0.6696 5.0 50 0.7174 {'precision': 0.6395721925133689, 'recall': 0.7391841779975278, 'f1': 0.6857798165137614, 'number': 809} {'precision': 0.13953488372093023, 'recall': 0.10084033613445378, 'f1': 0.11707317073170731, 'number': 119} {'precision': 0.7, 'recall': 0.8018779342723005, 'f1': 0.7474835886214442, 'number': 1065} 0.6533 0.7346 0.6915 0.7764
0.5668 6.0 60 0.6995 {'precision': 0.6404382470119522, 'recall': 0.7948084054388134, 'f1': 0.7093215664644236, 'number': 809} {'precision': 0.24675324675324675, 'recall': 0.15966386554621848, 'f1': 0.19387755102040818, 'number': 119} {'precision': 0.728213977566868, 'recall': 0.7924882629107981, 'f1': 0.7589928057553956, 'number': 1065} 0.6723 0.7556 0.7116 0.7790
0.4909 7.0 70 0.6820 {'precision': 0.6699029126213593, 'recall': 0.7676143386897404, 'f1': 0.7154377880184332, 'number': 809} {'precision': 0.24369747899159663, 'recall': 0.24369747899159663, 'f1': 0.24369747899159663, 'number': 119} {'precision': 0.7497781721384206, 'recall': 0.7934272300469484, 'f1': 0.7709854014598541, 'number': 1065} 0.6880 0.7501 0.7177 0.7903
0.4379 8.0 80 0.6724 {'precision': 0.6830309498399146, 'recall': 0.7911001236093943, 'f1': 0.7331042382588774, 'number': 809} {'precision': 0.2540983606557377, 'recall': 0.2605042016806723, 'f1': 0.2572614107883818, 'number': 119} {'precision': 0.7407087294727744, 'recall': 0.8046948356807512, 'f1': 0.7713771377137714, 'number': 1065} 0.6895 0.7667 0.7261 0.7970
0.3826 9.0 90 0.6814 {'precision': 0.7010869565217391, 'recall': 0.7972805933250927, 'f1': 0.746096009253904, 'number': 809} {'precision': 0.25, 'recall': 0.2605042016806723, 'f1': 0.25514403292181076, 'number': 119} {'precision': 0.7484874675885912, 'recall': 0.8131455399061033, 'f1': 0.7794779477947795, 'number': 1065} 0.7006 0.7737 0.7353 0.8011
0.3715 10.0 100 0.6815 {'precision': 0.6944444444444444, 'recall': 0.8034610630407911, 'f1': 0.7449856733524356, 'number': 809} {'precision': 0.3008130081300813, 'recall': 0.31092436974789917, 'f1': 0.3057851239669422, 'number': 119} {'precision': 0.7789757412398922, 'recall': 0.8140845070422535, 'f1': 0.7961432506887053, 'number': 1065} 0.7155 0.7797 0.7462 0.8088
0.3173 11.0 110 0.6886 {'precision': 0.6996735582154516, 'recall': 0.7948084054388134, 'f1': 0.744212962962963, 'number': 809} {'precision': 0.3230769230769231, 'recall': 0.35294117647058826, 'f1': 0.3373493975903615, 'number': 119} {'precision': 0.7559726962457338, 'recall': 0.831924882629108, 'f1': 0.7921323200715245, 'number': 1065} 0.7073 0.7883 0.7456 0.8038
0.3 12.0 120 0.7026 {'precision': 0.7111597374179431, 'recall': 0.8034610630407911, 'f1': 0.7544979686593152, 'number': 809} {'precision': 0.33613445378151263, 'recall': 0.33613445378151263, 'f1': 0.33613445378151263, 'number': 119} {'precision': 0.7782724844167409, 'recall': 0.8206572769953052, 'f1': 0.7989031078610604, 'number': 1065} 0.7254 0.7847 0.7539 0.8036
0.2864 13.0 130 0.7049 {'precision': 0.7133406835722161, 'recall': 0.799752781211372, 'f1': 0.7540792540792541, 'number': 809} {'precision': 0.3203125, 'recall': 0.3445378151260504, 'f1': 0.33198380566801616, 'number': 119} {'precision': 0.7736516357206012, 'recall': 0.8215962441314554, 'f1': 0.7969034608378871, 'number': 1065} 0.7216 0.7842 0.7516 0.8027
0.2625 14.0 140 0.7129 {'precision': 0.713971397139714, 'recall': 0.8022249690976514, 'f1': 0.7555296856810244, 'number': 809} {'precision': 0.35833333333333334, 'recall': 0.36134453781512604, 'f1': 0.35983263598326365, 'number': 119} {'precision': 0.7776793622674933, 'recall': 0.8244131455399061, 'f1': 0.8003646308113036, 'number': 1065} 0.7275 0.7878 0.7564 0.8021
0.2656 15.0 150 0.7132 {'precision': 0.712403951701427, 'recall': 0.8022249690976514, 'f1': 0.7546511627906977, 'number': 809} {'precision': 0.3492063492063492, 'recall': 0.3697478991596639, 'f1': 0.35918367346938773, 'number': 119} {'precision': 0.7774822695035462, 'recall': 0.8234741784037559, 'f1': 0.7998176014591885, 'number': 1065} 0.7252 0.7878 0.7552 0.8021

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
10
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for sanmisanti/layoutlm-funsd

Finetuned
(151)
this model