dropoff-utcustom-train-SF-RGBD-b5_3

This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2768
  • Mean Iou: 0.3194
  • Mean Accuracy: 0.4999
  • Overall Accuracy: 0.9578
  • Accuracy Unlabeled: nan
  • Accuracy Dropoff: 0.0006
  • Accuracy Undropoff: 0.9993
  • Iou Unlabeled: 0.0
  • Iou Dropoff: 0.0006
  • Iou Undropoff: 0.9578

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 15
  • eval_batch_size: 15
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 120

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unlabeled Accuracy Dropoff Accuracy Undropoff Iou Unlabeled Iou Dropoff Iou Undropoff
1.0992 5.0 10 1.0599 0.1938 0.4241 0.5281 nan 0.3106 0.5376 0.0 0.0540 0.5273
1.0188 10.0 20 0.9493 0.2781 0.4808 0.7846 nan 0.1494 0.8122 0.0 0.0476 0.7868
0.9218 15.0 30 0.8130 0.3074 0.4913 0.8851 nan 0.0618 0.9209 0.0 0.0364 0.8858
0.8411 20.0 40 0.7253 0.3089 0.4866 0.9038 nan 0.0315 0.9416 0.0 0.0221 0.9047
0.7583 25.0 50 0.6719 0.3097 0.4890 0.9069 nan 0.0331 0.9448 0.0 0.0216 0.9076
0.688 30.0 60 0.6303 0.3109 0.4883 0.9170 nan 0.0207 0.9559 0.0 0.0149 0.9179
0.6279 35.0 70 0.5919 0.3139 0.4918 0.9276 nan 0.0164 0.9671 0.0 0.0133 0.9283
0.5533 40.0 80 0.5375 0.3168 0.4961 0.9377 nan 0.0144 0.9777 0.0 0.0125 0.9380
0.5116 45.0 90 0.5111 0.3176 0.4970 0.9442 nan 0.0093 0.9847 0.0 0.0083 0.9445
0.4801 50.0 100 0.4696 0.3183 0.4981 0.9492 nan 0.0062 0.9901 0.0 0.0057 0.9492
0.4744 55.0 110 0.4317 0.3187 0.4987 0.9543 nan 0.0018 0.9956 0.0 0.0017 0.9543
0.4494 60.0 120 0.3991 0.3189 0.4991 0.9555 nan 0.0013 0.9969 0.0 0.0012 0.9555
0.386 65.0 130 0.3737 0.3189 0.4990 0.9565 nan 0.0000 0.9980 0.0 0.0000 0.9565
0.3674 70.0 140 0.3538 0.3191 0.4994 0.9567 nan 0.0007 0.9981 0.0 0.0007 0.9567
0.3601 75.0 150 0.3413 0.3192 0.4995 0.9573 nan 0.0002 0.9988 0.0 0.0002 0.9573
0.3626 80.0 160 0.3225 0.3193 0.4996 0.9569 nan 0.0009 0.9984 0.0 0.0009 0.9569
0.3331 85.0 170 0.3163 0.3195 0.5000 0.9576 nan 0.0009 0.9991 0.0 0.0009 0.9576
0.319 90.0 180 0.3004 0.3200 0.5008 0.9577 nan 0.0024 0.9991 0.0 0.0024 0.9577
0.3163 95.0 190 0.2931 0.3198 0.5004 0.9575 nan 0.0020 0.9989 0.0 0.0020 0.9575
0.3185 100.0 200 0.2920 0.3194 0.4999 0.9577 nan 0.0006 0.9992 0.0 0.0006 0.9577
0.3122 105.0 210 0.2831 0.3194 0.4999 0.9578 nan 0.0005 0.9994 0.0 0.0005 0.9578
0.3218 110.0 220 0.2788 0.3195 0.5000 0.9576 nan 0.0009 0.9991 0.0 0.0009 0.9576
0.3037 115.0 230 0.2752 0.3194 0.4999 0.9577 nan 0.0006 0.9992 0.0 0.0006 0.9577
0.3319 120.0 240 0.2768 0.3194 0.4999 0.9578 nan 0.0006 0.9993 0.0 0.0006 0.9578

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support