dropoff-utcustom-train-SF-RGBD-b5_3
This model is a fine-tuned version of nvidia/mit-b5 on the sam1120/dropoff-utcustom-TRAIN dataset. It achieves the following results on the evaluation set:
- Loss: 0.2768
- Mean Iou: 0.3194
- Mean Accuracy: 0.4999
- Overall Accuracy: 0.9578
- Accuracy Unlabeled: nan
- Accuracy Dropoff: 0.0006
- Accuracy Undropoff: 0.9993
- Iou Unlabeled: 0.0
- Iou Dropoff: 0.0006
- Iou Undropoff: 0.9578
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 15
- eval_batch_size: 15
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 120
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dropoff | Accuracy Undropoff | Iou Unlabeled | Iou Dropoff | Iou Undropoff |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0992 | 5.0 | 10 | 1.0599 | 0.1938 | 0.4241 | 0.5281 | nan | 0.3106 | 0.5376 | 0.0 | 0.0540 | 0.5273 |
1.0188 | 10.0 | 20 | 0.9493 | 0.2781 | 0.4808 | 0.7846 | nan | 0.1494 | 0.8122 | 0.0 | 0.0476 | 0.7868 |
0.9218 | 15.0 | 30 | 0.8130 | 0.3074 | 0.4913 | 0.8851 | nan | 0.0618 | 0.9209 | 0.0 | 0.0364 | 0.8858 |
0.8411 | 20.0 | 40 | 0.7253 | 0.3089 | 0.4866 | 0.9038 | nan | 0.0315 | 0.9416 | 0.0 | 0.0221 | 0.9047 |
0.7583 | 25.0 | 50 | 0.6719 | 0.3097 | 0.4890 | 0.9069 | nan | 0.0331 | 0.9448 | 0.0 | 0.0216 | 0.9076 |
0.688 | 30.0 | 60 | 0.6303 | 0.3109 | 0.4883 | 0.9170 | nan | 0.0207 | 0.9559 | 0.0 | 0.0149 | 0.9179 |
0.6279 | 35.0 | 70 | 0.5919 | 0.3139 | 0.4918 | 0.9276 | nan | 0.0164 | 0.9671 | 0.0 | 0.0133 | 0.9283 |
0.5533 | 40.0 | 80 | 0.5375 | 0.3168 | 0.4961 | 0.9377 | nan | 0.0144 | 0.9777 | 0.0 | 0.0125 | 0.9380 |
0.5116 | 45.0 | 90 | 0.5111 | 0.3176 | 0.4970 | 0.9442 | nan | 0.0093 | 0.9847 | 0.0 | 0.0083 | 0.9445 |
0.4801 | 50.0 | 100 | 0.4696 | 0.3183 | 0.4981 | 0.9492 | nan | 0.0062 | 0.9901 | 0.0 | 0.0057 | 0.9492 |
0.4744 | 55.0 | 110 | 0.4317 | 0.3187 | 0.4987 | 0.9543 | nan | 0.0018 | 0.9956 | 0.0 | 0.0017 | 0.9543 |
0.4494 | 60.0 | 120 | 0.3991 | 0.3189 | 0.4991 | 0.9555 | nan | 0.0013 | 0.9969 | 0.0 | 0.0012 | 0.9555 |
0.386 | 65.0 | 130 | 0.3737 | 0.3189 | 0.4990 | 0.9565 | nan | 0.0000 | 0.9980 | 0.0 | 0.0000 | 0.9565 |
0.3674 | 70.0 | 140 | 0.3538 | 0.3191 | 0.4994 | 0.9567 | nan | 0.0007 | 0.9981 | 0.0 | 0.0007 | 0.9567 |
0.3601 | 75.0 | 150 | 0.3413 | 0.3192 | 0.4995 | 0.9573 | nan | 0.0002 | 0.9988 | 0.0 | 0.0002 | 0.9573 |
0.3626 | 80.0 | 160 | 0.3225 | 0.3193 | 0.4996 | 0.9569 | nan | 0.0009 | 0.9984 | 0.0 | 0.0009 | 0.9569 |
0.3331 | 85.0 | 170 | 0.3163 | 0.3195 | 0.5000 | 0.9576 | nan | 0.0009 | 0.9991 | 0.0 | 0.0009 | 0.9576 |
0.319 | 90.0 | 180 | 0.3004 | 0.3200 | 0.5008 | 0.9577 | nan | 0.0024 | 0.9991 | 0.0 | 0.0024 | 0.9577 |
0.3163 | 95.0 | 190 | 0.2931 | 0.3198 | 0.5004 | 0.9575 | nan | 0.0020 | 0.9989 | 0.0 | 0.0020 | 0.9575 |
0.3185 | 100.0 | 200 | 0.2920 | 0.3194 | 0.4999 | 0.9577 | nan | 0.0006 | 0.9992 | 0.0 | 0.0006 | 0.9577 |
0.3122 | 105.0 | 210 | 0.2831 | 0.3194 | 0.4999 | 0.9578 | nan | 0.0005 | 0.9994 | 0.0 | 0.0005 | 0.9578 |
0.3218 | 110.0 | 220 | 0.2788 | 0.3195 | 0.5000 | 0.9576 | nan | 0.0009 | 0.9991 | 0.0 | 0.0009 | 0.9576 |
0.3037 | 115.0 | 230 | 0.2752 | 0.3194 | 0.4999 | 0.9577 | nan | 0.0006 | 0.9992 | 0.0 | 0.0006 | 0.9577 |
0.3319 | 120.0 | 240 | 0.2768 | 0.3194 | 0.4999 | 0.9578 | nan | 0.0006 | 0.9993 | 0.0 | 0.0006 | 0.9578 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support