|
|
|
import torch |
|
import detectron2 |
|
from detectron2.config import get_cfg |
|
from detectron2.engine import DefaultPredictor |
|
from detectron2.utils.visualizer import Visualizer |
|
from detectron2.data import MetadataCatalog |
|
import cv2 |
|
import json |
|
import argparse |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description="Run inference with Detectron2 model") |
|
parser.add_argument("--image", required=True, help="Path to input image") |
|
parser.add_argument("--output", default="output.jpg", help="Path to output image") |
|
args = parser.parse_args() |
|
|
|
|
|
cfg = get_cfg() |
|
with open("config.json", "r") as f: |
|
cfg_dict = json.load(f) |
|
cfg.merge_from_dict(cfg_dict) |
|
|
|
|
|
cfg.MODEL.WEIGHTS = "model.pth" |
|
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
predictor = DefaultPredictor(cfg) |
|
|
|
|
|
image = cv2.imread(args.image) |
|
|
|
|
|
outputs = predictor(image) |
|
|
|
|
|
with open("metadata.json", "r") as f: |
|
metadata_dict = json.load(f) |
|
|
|
|
|
metadata = MetadataCatalog.get("inference") |
|
metadata.thing_classes = metadata_dict["thing_classes"] |
|
|
|
|
|
v = Visualizer(image[:, :, ::-1], metadata=metadata, scale=1.2) |
|
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) |
|
|
|
|
|
cv2.imwrite(args.output, out.get_image()[:, :, ::-1]) |
|
print(f"Saved output to {args.output}") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|