File size: 1,587 Bytes
472d78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

import torch
import detectron2
from detectron2.config import get_cfg
from detectron2.engine import DefaultPredictor
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog
import cv2
import json
import argparse

def main():
    parser = argparse.ArgumentParser(description="Run inference with Detectron2 model")
    parser.add_argument("--image", required=True, help="Path to input image")
    parser.add_argument("--output", default="output.jpg", help="Path to output image")
    args = parser.parse_args()
    
    # Load config
    cfg = get_cfg()
    with open("config.json", "r") as f:
        cfg_dict = json.load(f)
        cfg.merge_from_dict(cfg_dict)
    
    # Update inference parameters
    cfg.MODEL.WEIGHTS = "model.pth"
    cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
    
    # Create predictor
    predictor = DefaultPredictor(cfg)
    
    # Load image
    image = cv2.imread(args.image)
    
    # Run prediction
    outputs = predictor(image)
    
    # Load metadata
    with open("metadata.json", "r") as f:
        metadata_dict = json.load(f)
    
    # Setup metadata
    metadata = MetadataCatalog.get("inference")
    metadata.thing_classes = metadata_dict["thing_classes"]
    
    # Visualize
    v = Visualizer(image[:, :, ::-1], metadata=metadata, scale=1.2)
    out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
    
    # Save output
    cv2.imwrite(args.output, out.get_image()[:, :, ::-1])
    print(f"Saved output to {args.output}")

if __name__ == "__main__":
    main()