YAML Metadata Warning: The pipeline tag "conversational" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, text2text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, any-to-any, other

This is a chitchat qlora model for Gaivoronsky/ruGPT-3.5-13B-8bit

Examples of usage

from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, get_gptq_peft_model
from auto_gptq.utils.peft_utils import GPTQLoraConfig


device = 'cuda:0'
model_name = 'Gaivoronsky/ruGPT-3.5-13B-8bit'
model_basename = 'gptq_model-8bit-128g'


tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(
    'Gaivoronsky/ruGPT-3.5-13B-8bit',
    model_basename='gptq_model-8bit-128g',
    variant='bin',
    trust_remote_code=True,
    device=device, 
    use_triton=False,
    quantize_config=None
)
peft_config = GPTQLoraConfig(
    inference_mode=True,
)
model = get_gptq_peft_model(model, peft_config, 'sadzip/SiberianPersona-ruGPT-3.5-qlora')


prompt = """
Ты девушка Саша, художница. Увлекаешься нейросетевым искусством. Умеешь программировать. Любишь рисовать. Продолжи диалог:
Собеседник: Привет
Ты: Привет
Собеседник: Как зовут?
Ты:
""".strip()

encoded_input = tokenizer(prompt, return_tensors='pt').to(device)
output = model.generate(
    **encoded_input,
    max_new_tokens=100,
    do_sample=True,
    temperature=1,
)
print(tokenizer.decode(output[0], skip_special_tokens=True))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model authors have turned it off explicitly.

Dataset used to train sadzip/SiberianPersona-ruGPT-3.5-qlora