Commit
·
5d851a5
1
Parent(s):
c0107d1
Update README.md
Browse files
README.md
CHANGED
@@ -1,19 +1,87 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
-
- name: verdict-classifier
|
7 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
8 |
---
|
9 |
|
10 |
-
|
11 |
-
should probably proofread and complete it, then remove this comment. -->
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
16 |
-
It achieves the following results on the evaluation set:
|
17 |
- Loss: 0.2238
|
18 |
- F1 Macro: 0.8540
|
19 |
- F1 Misinformation: 0.9798
|
@@ -24,17 +92,6 @@ It achieves the following results on the evaluation set:
|
|
24 |
- Prec Factual: 0.9889
|
25 |
- Prec Other: 0.5294
|
26 |
|
27 |
-
## Model description
|
28 |
-
|
29 |
-
More information needed
|
30 |
-
|
31 |
-
## Intended uses & limitations
|
32 |
-
|
33 |
-
More information needed
|
34 |
-
|
35 |
-
## Training and evaluation data
|
36 |
-
|
37 |
-
More information needed
|
38 |
|
39 |
## Training procedure
|
40 |
|
@@ -102,4 +159,4 @@ The following hyperparameters were used during training:
|
|
102 |
- Transformers 4.11.3
|
103 |
- Pytorch 1.9.0+cu102
|
104 |
- Datasets 1.9.0
|
105 |
-
- Tokenizers 0.10.2
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- am
|
5 |
+
- ar
|
6 |
+
- hy
|
7 |
+
- eu
|
8 |
+
- bn
|
9 |
+
- bs
|
10 |
+
- bg
|
11 |
+
- my
|
12 |
+
- hr
|
13 |
+
- ca
|
14 |
+
- cs
|
15 |
+
- da
|
16 |
+
- nl
|
17 |
+
- en
|
18 |
+
- et
|
19 |
+
- fi
|
20 |
+
- fr
|
21 |
+
- ka
|
22 |
+
- de
|
23 |
+
- el
|
24 |
+
- gu
|
25 |
+
- ht
|
26 |
+
- iw
|
27 |
+
- hi
|
28 |
+
- hu
|
29 |
+
- is
|
30 |
+
- in
|
31 |
+
- it
|
32 |
+
- ja
|
33 |
+
- kn
|
34 |
+
- km
|
35 |
+
- ko
|
36 |
+
- lo
|
37 |
+
- lv
|
38 |
+
- lt
|
39 |
+
- ml
|
40 |
+
- mr
|
41 |
+
- ne
|
42 |
+
- no
|
43 |
+
- or
|
44 |
+
- pa
|
45 |
+
- ps
|
46 |
+
- fa
|
47 |
+
- pl
|
48 |
+
- pt
|
49 |
+
- ro
|
50 |
+
- ru
|
51 |
+
- sr
|
52 |
+
- zh
|
53 |
+
- sd
|
54 |
+
- si
|
55 |
+
- sk
|
56 |
+
- sl
|
57 |
+
- es
|
58 |
+
- sv
|
59 |
+
- tl
|
60 |
+
- ta
|
61 |
+
- te
|
62 |
+
- th
|
63 |
+
- tr
|
64 |
+
- uk
|
65 |
+
- ur
|
66 |
+
- ug
|
67 |
+
- vi
|
68 |
+
- cy
|
69 |
tags:
|
70 |
- generated_from_trainer
|
71 |
model-index:
|
72 |
+
- name: verdict-classifier-en
|
73 |
+
results:
|
74 |
+
- task:
|
75 |
+
type: text-classification
|
76 |
+
name: Verdict Classification
|
77 |
+
widget:
|
78 |
+
- "Even though it might look true, it has been taken out of context."
|
79 |
---
|
80 |
|
81 |
+
# Multilingual Verdict Classifier
|
|
|
82 |
|
83 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on 2,500 deduplicated multilingual verdicts from [Google Fact Check Tools API](https://developers.google.com/fact-check/tools/api/reference/rest/v1alpha1/claims/search), translated into 65 languages with the [Google Cloud Translation API](https://cloud.google.com/translate/docs/reference/rest/).
|
84 |
+
It achieves the following results on the evaluation set, being 1,000 such verdicts, but here including duplicates to represent the true distribution:
|
|
|
|
|
85 |
- Loss: 0.2238
|
86 |
- F1 Macro: 0.8540
|
87 |
- F1 Misinformation: 0.9798
|
|
|
92 |
- Prec Factual: 0.9889
|
93 |
- Prec Other: 0.5294
|
94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
## Training procedure
|
97 |
|
|
|
159 |
- Transformers 4.11.3
|
160 |
- Pytorch 1.9.0+cu102
|
161 |
- Datasets 1.9.0
|
162 |
+
- Tokenizers 0.10.2
|