YAML Metadata
Error:
"widget[0]" must be of type object
YAML Metadata
Error:
"model-index[0].results[0].metrics" is required
Multilingual Verdict Classifier
This model is a fine-tuned version of xlm-roberta-base on 2,500 deduplicated multilingual verdicts from Google Fact Check Tools API, translated into 65 languages with the Google Cloud Translation API. It achieves the following results on the evaluation set, being 1,000 such verdicts, but here including duplicates to represent the true distribution:
- Loss: 0.2238
- F1 Macro: 0.8540
- F1 Misinformation: 0.9798
- F1 Factual: 0.9889
- F1 Other: 0.5934
- Prec Macro: 0.8348
- Prec Misinformation: 0.9860
- Prec Factual: 0.9889
- Prec Other: 0.5294
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 162525
- num_epochs: 1000
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Misinformation | F1 Factual | F1 Other | Prec Macro | Prec Misinformation | Prec Factual | Prec Other |
---|---|---|---|---|---|---|---|---|---|---|---|
1.1109 | 0.1 | 2000 | 1.2166 | 0.0713 | 0.1497 | 0.0 | 0.0640 | 0.2451 | 0.7019 | 0.0 | 0.0334 |
0.9551 | 0.2 | 4000 | 0.7801 | 0.3611 | 0.8889 | 0.0 | 0.1943 | 0.3391 | 0.8915 | 0.0 | 0.1259 |
0.9275 | 0.3 | 6000 | 0.7712 | 0.3468 | 0.9123 | 0.0 | 0.1282 | 0.3304 | 0.9051 | 0.0 | 0.0862 |
0.8881 | 0.39 | 8000 | 0.5386 | 0.3940 | 0.9524 | 0.0 | 0.2297 | 0.3723 | 0.9748 | 0.0 | 0.1420 |
0.7851 | 0.49 | 10000 | 0.3298 | 0.6886 | 0.9626 | 0.7640 | 0.3393 | 0.6721 | 0.9798 | 0.7727 | 0.2639 |
0.639 | 0.59 | 12000 | 0.2156 | 0.7847 | 0.9633 | 0.9355 | 0.4554 | 0.7540 | 0.9787 | 0.9062 | 0.3770 |
0.5677 | 0.69 | 14000 | 0.1682 | 0.7877 | 0.9694 | 0.9667 | 0.4270 | 0.7763 | 0.9745 | 0.9667 | 0.3878 |
0.5218 | 0.79 | 16000 | 0.1475 | 0.8037 | 0.9692 | 0.9667 | 0.4752 | 0.7804 | 0.9812 | 0.9667 | 0.3934 |
0.4682 | 0.89 | 18000 | 0.1458 | 0.8097 | 0.9734 | 0.9667 | 0.4889 | 0.7953 | 0.9791 | 0.9667 | 0.44 |
0.4188 | 0.98 | 20000 | 0.1416 | 0.8370 | 0.9769 | 0.9724 | 0.5618 | 0.8199 | 0.9826 | 0.9670 | 0.5102 |
0.3735 | 1.08 | 22000 | 0.1624 | 0.8094 | 0.9698 | 0.9368 | 0.5217 | 0.7780 | 0.9823 | 0.89 | 0.4615 |
0.3242 | 1.18 | 24000 | 0.1648 | 0.8338 | 0.9769 | 0.9727 | 0.5517 | 0.8167 | 0.9826 | 0.9570 | 0.5106 |
0.2785 | 1.28 | 26000 | 0.1843 | 0.8261 | 0.9739 | 0.9780 | 0.5263 | 0.8018 | 0.9836 | 0.9674 | 0.4545 |
0.25 | 1.38 | 28000 | 0.1975 | 0.8344 | 0.9744 | 0.9834 | 0.5455 | 0.8072 | 0.9859 | 0.9780 | 0.4576 |
0.2176 | 1.48 | 30000 | 0.1849 | 0.8209 | 0.9691 | 0.9889 | 0.5047 | 0.7922 | 0.9846 | 0.9889 | 0.4030 |
0.1966 | 1.58 | 32000 | 0.2119 | 0.8194 | 0.9685 | 0.9944 | 0.4954 | 0.7920 | 0.9846 | 1.0 | 0.3913 |
0.1738 | 1.67 | 34000 | 0.2110 | 0.8352 | 0.9708 | 0.9944 | 0.5405 | 0.8035 | 0.9881 | 1.0 | 0.4225 |
0.1625 | 1.77 | 36000 | 0.2152 | 0.8165 | 0.9709 | 0.9834 | 0.4950 | 0.7905 | 0.9835 | 0.9780 | 0.4098 |
0.1522 | 1.87 | 38000 | 0.2300 | 0.8097 | 0.9697 | 0.9832 | 0.4762 | 0.7856 | 0.9835 | 0.9888 | 0.3846 |
0.145 | 1.97 | 40000 | 0.1955 | 0.8519 | 0.9774 | 0.9889 | 0.5895 | 0.8280 | 0.9860 | 0.9889 | 0.5091 |
0.1248 | 2.07 | 42000 | 0.2308 | 0.8149 | 0.9703 | 0.9889 | 0.4854 | 0.7897 | 0.9835 | 0.9889 | 0.3968 |
0.1186 | 2.17 | 44000 | 0.2368 | 0.8172 | 0.9733 | 0.9834 | 0.4948 | 0.7942 | 0.9836 | 0.9780 | 0.4211 |
0.1122 | 2.26 | 46000 | 0.2401 | 0.7968 | 0.9804 | 0.8957 | 0.5143 | 0.8001 | 0.9849 | 1.0 | 0.4154 |
0.1099 | 2.36 | 48000 | 0.2290 | 0.8119 | 0.9647 | 0.9834 | 0.4874 | 0.7777 | 0.9880 | 0.9780 | 0.3671 |
0.1093 | 2.46 | 50000 | 0.2256 | 0.8247 | 0.9745 | 0.9889 | 0.5106 | 0.8053 | 0.9825 | 0.9889 | 0.4444 |
0.1053 | 2.56 | 52000 | 0.2416 | 0.8456 | 0.9799 | 0.9889 | 0.5679 | 0.8434 | 0.9805 | 0.9889 | 0.5610 |
0.1049 | 2.66 | 54000 | 0.2850 | 0.7585 | 0.9740 | 0.8902 | 0.4112 | 0.7650 | 0.9802 | 0.9865 | 0.3284 |
0.098 | 2.76 | 56000 | 0.2828 | 0.8049 | 0.9642 | 0.9889 | 0.4615 | 0.7750 | 0.9856 | 0.9889 | 0.3506 |
0.0962 | 2.86 | 58000 | 0.2238 | 0.8540 | 0.9798 | 0.9889 | 0.5934 | 0.8348 | 0.9860 | 0.9889 | 0.5294 |
0.0975 | 2.95 | 60000 | 0.2494 | 0.8249 | 0.9715 | 0.9889 | 0.5143 | 0.7967 | 0.9858 | 0.9889 | 0.4154 |
0.0877 | 3.05 | 62000 | 0.2464 | 0.8274 | 0.9733 | 0.9889 | 0.5200 | 0.8023 | 0.9847 | 0.9889 | 0.4333 |
0.0848 | 3.15 | 64000 | 0.2338 | 0.8263 | 0.9740 | 0.9889 | 0.5161 | 0.8077 | 0.9814 | 0.9889 | 0.4528 |
0.0859 | 3.25 | 66000 | 0.2335 | 0.8365 | 0.9750 | 0.9889 | 0.5455 | 0.8108 | 0.9859 | 0.9889 | 0.4576 |
0.084 | 3.35 | 68000 | 0.2067 | 0.8343 | 0.9763 | 0.9889 | 0.5376 | 0.8148 | 0.9837 | 0.9889 | 0.4717 |
0.0837 | 3.45 | 70000 | 0.2516 | 0.8249 | 0.9746 | 0.9889 | 0.5111 | 0.8097 | 0.9803 | 0.9889 | 0.46 |
0.0809 | 3.54 | 72000 | 0.2948 | 0.8258 | 0.9728 | 0.9944 | 0.5102 | 0.8045 | 0.9824 | 1.0 | 0.4310 |
0.0833 | 3.64 | 74000 | 0.2457 | 0.8494 | 0.9744 | 0.9944 | 0.5794 | 0.8173 | 0.9893 | 1.0 | 0.4627 |
0.0796 | 3.74 | 76000 | 0.3188 | 0.8277 | 0.9733 | 0.9889 | 0.5208 | 0.8059 | 0.9825 | 0.9889 | 0.4464 |
0.0821 | 3.84 | 78000 | 0.2642 | 0.8343 | 0.9714 | 0.9944 | 0.5370 | 0.8045 | 0.9870 | 1.0 | 0.4265 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu102
- Datasets 1.9.0
- Tokenizers 0.10.2
- Downloads last month
- 15
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.