distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1443
  • Accuracy: {'accuracy': 0.898}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3596 {'accuracy': 0.88}
0.4442 2.0 500 0.4824 {'accuracy': 0.867}
0.4442 3.0 750 0.5480 {'accuracy': 0.895}
0.2096 4.0 1000 0.6805 {'accuracy': 0.887}
0.2096 5.0 1250 0.9621 {'accuracy': 0.887}
0.0618 6.0 1500 0.9738 {'accuracy': 0.885}
0.0618 7.0 1750 1.0855 {'accuracy': 0.897}
0.0377 8.0 2000 1.0957 {'accuracy': 0.899}
0.0377 9.0 2250 1.1224 {'accuracy': 0.897}
0.0059 10.0 2500 1.1443 {'accuracy': 0.898}

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.6.0+cpu
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for rvrj/distilbert-base-uncased-lora-text-classification

Adapter
(260)
this model