distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8762
  • Accuracy: {'accuracy': 0.9003333333333333}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.4732 1.0 750 0.3050 {'accuracy': 0.8973333333333333}
0.3815 2.0 1500 0.4199 {'accuracy': 0.881}
0.3115 3.0 2250 0.5065 {'accuracy': 0.8843333333333333}
0.2536 4.0 3000 0.4385 {'accuracy': 0.898}
0.1905 5.0 3750 0.6383 {'accuracy': 0.9033333333333333}
0.1749 6.0 4500 0.5822 {'accuracy': 0.8926666666666667}
0.1161 7.0 5250 0.6724 {'accuracy': 0.9033333333333333}
0.0696 8.0 6000 0.8629 {'accuracy': 0.8993333333333333}
0.0607 9.0 6750 0.8520 {'accuracy': 0.905}
0.0347 10.0 7500 0.8762 {'accuracy': 0.9003333333333333}

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for rseverino/distilbert-base-uncased-lora-text-classification

Adapter
(237)
this model