ronyw7/BERT_PatentAbstract2IncomeGroup_2500
This model is a fine-tuned version of bert-base-cased on a small subset (2500 samples) of the Google Patents Public Dataset. It uses patent abstracts to predict the income group of the country that has filed the patent. This is a proof-of-concept for a future text classification task.
It achieves the following results on the evaluation set:
- Train Loss: 0.3547
- Validation Loss: 0.4376
- Train Accuracy: 0.8307
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 224, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
0.7751 | 0.5325 | 0.7712 | 0 |
0.4271 | 0.4376 | 0.8307 | 1 |
0.3547 | 0.4376 | 0.8307 | 2 |
Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.0
- Tokenizers 0.13.3
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ronyw7/BERT_PatentAbstract2IncomeGroup_2500
Base model
google-bert/bert-base-cased