Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: echarlaix/tiny-random-mistral
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 1d4c9f6e3fdcd125_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/1d4c9f6e3fdcd125_train_data.json
  type:
    field_instruction: instruction
    field_output: output
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/f8960a9d-edeb-4b29-bcdb-f5db588483bc
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2652
micro_batch_size: 4
mlflow_experiment_name: /tmp/1d4c9f6e3fdcd125_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
  pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.04
wandb_entity: null
wandb_mode: online
wandb_name: 26545dad-1c8b-4b71-bd6a-45e32355614f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 26545dad-1c8b-4b71-bd6a-45e32355614f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

f8960a9d-edeb-4b29-bcdb-f5db588483bc

This model is a fine-tuned version of echarlaix/tiny-random-mistral on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.2714

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 2652

Training results

Training Loss Epoch Step Validation Loss
83.0589 0.0007 1 10.3802
82.5901 0.0686 100 10.3337
82.5677 0.1371 200 10.3225
82.521 0.2057 300 10.3162
82.3826 0.2742 400 10.3090
82.4453 0.3428 500 10.3018
82.4075 0.4113 600 10.2958
82.3576 0.4799 700 10.2901
82.3485 0.5485 800 10.2865
82.3176 0.6170 900 10.2842
82.255 0.6856 1000 10.2815
82.195 0.7541 1100 10.2797
82.2751 0.8227 1200 10.2779
82.3208 0.8913 1300 10.2764
82.2335 0.9598 1400 10.2753
82.2106 1.0287 1500 10.2744
82.2033 1.0973 1600 10.2736
82.223 1.1658 1700 10.2730
82.3021 1.2344 1800 10.2725
82.313 1.3029 1900 10.2722
82.3386 1.3715 2000 10.2719
82.2007 1.4401 2100 10.2718
82.2385 1.5086 2200 10.2716
82.2108 1.5772 2300 10.2715
82.254 1.6457 2400 10.2714
82.2093 1.7143 2500 10.2714
82.2733 1.7828 2600 10.2714

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
7
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for romainnn/f8960a9d-edeb-4b29-bcdb-f5db588483bc

Adapter
(227)
this model