Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - ffda33d14082866c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ffda33d14082866c_train_data.json
  type:
    field_instruction: article
    field_output: highlights
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/d8abd64a-a056-4dc3-acae-1063719be070
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 744
micro_batch_size: 4
mlflow_experiment_name: /tmp/ffda33d14082866c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.016037412074888298
wandb_entity: null
wandb_mode: online
wandb_name: 62d8fe6a-61ab-45fd-a1f5-289574a1196a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 62d8fe6a-61ab-45fd-a1f5-289574a1196a
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

d8abd64a-a056-4dc3-acae-1063719be070

This model is a fine-tuned version of Orenguteng/Llama-3-8B-Lexi-Uncensored on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2675

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 744

Training results

Training Loss Epoch Step Validation Loss
2.0296 0.0001 1 2.0787
1.4172 0.0104 100 1.3251
1.282 0.0209 200 1.3061
1.275 0.0313 300 1.2947
1.2823 0.0417 400 1.2834
1.2612 0.0522 500 1.2755
1.2048 0.0626 600 1.2693
1.3577 0.0730 700 1.2675

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for romainnn/d8abd64a-a056-4dc3-acae-1063719be070

Adapter
(356)
this model