Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Eurdem/Defne_llama3_2x8B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - e0e01058868c714f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/e0e01058868c714f_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/a8b7a5fa-7ae7-4983-b6b0-11e97058e2d9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 840
micro_batch_size: 4
mlflow_experiment_name: /tmp/e0e01058868c714f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.00983438889107431
wandb_entity: null
wandb_mode: online
wandb_name: 42873230-1c58-4d84-a54f-dbd9a742d78f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 42873230-1c58-4d84-a54f-dbd9a742d78f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

a8b7a5fa-7ae7-4983-b6b0-11e97058e2d9

This model is a fine-tuned version of Eurdem/Defne_llama3_2x8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2033

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 840

Training results

Training Loss Epoch Step Validation Loss
1.7738 0.0001 1 1.7346
1.3742 0.0064 100 1.2973
1.3926 0.0127 200 1.2624
1.2406 0.0191 300 1.2426
1.3042 0.0254 400 1.2278
1.1462 0.0318 500 1.2163
1.0083 0.0381 600 1.2090
1.2896 0.0445 700 1.2047
1.2064 0.0509 800 1.2033

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for romainnn/a8b7a5fa-7ae7-4983-b6b0-11e97058e2d9

Adapter
(132)
this model