See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: NousResearch/CodeLlama-13b-hf-flash
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- fccf5e00a8b0a268_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/fccf5e00a8b0a268_train_data.json
type:
field_instruction: dataset
field_output: context
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 2
early_stopping_threshold: 0.0001
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: romainnn/a5d3c872-f9c0-4eff-9d4e-892780da38ff
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 632
micro_batch_size: 4
mlflow_experiment_name: /tmp/fccf5e00a8b0a268_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.027938423714134047
wandb_entity: null
wandb_mode: online
wandb_name: b2dbc1db-a1cf-4661-b9c4-e7553c50247e
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b2dbc1db-a1cf-4661-b9c4-e7553c50247e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
a5d3c872-f9c0-4eff-9d4e-892780da38ff
This model is a fine-tuned version of NousResearch/CodeLlama-13b-hf-flash on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0734
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 632
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.9886 | 0.0002 | 1 | 1.6299 |
8.2512 | 0.0184 | 100 | 1.1396 |
8.9256 | 0.0368 | 200 | 1.1085 |
8.2225 | 0.0552 | 300 | 1.0929 |
6.9946 | 0.0736 | 400 | 1.0820 |
9.0978 | 0.0920 | 500 | 1.0756 |
8.8998 | 0.1104 | 600 | 1.0734 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for romainnn/a5d3c872-f9c0-4eff-9d4e-892780da38ff
Base model
NousResearch/CodeLlama-13b-hf-flash