Last commit not found
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - chinese_english_AE_fa_overfitting
metrics:
  - wer
model-index:
  - name: Whisper tiny Chinese
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Chinese English 'AE' Phonemes
          type: chinese_english_AE_fa_overfitting
          args: 'config: default, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 15.33186382561842

Whisper tiny Chinese

This model is a fine-tuned version of openai/whisper-tiny on the Chinese English 'AE' Phonemes dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3921
  • Wer: 15.3319

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0616 2.0080 1000 0.3729 14.4012
0.0007 4.0161 2000 0.3843 15.0869
0.0005 6.0241 3000 0.3921 15.3319

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1