Last commit not found
metadata
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- chinese_english_AE_fa_overfitting
metrics:
- wer
model-index:
- name: Whisper tiny Chinese
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Chinese English 'AE' Phonemes
type: chinese_english_AE_fa_overfitting
args: 'config: default, split: test'
metrics:
- name: Wer
type: wer
value: 15.33186382561842
Whisper tiny Chinese
This model is a fine-tuned version of openai/whisper-tiny on the Chinese English 'AE' Phonemes dataset. It achieves the following results on the evaluation set:
- Loss: 0.3921
- Wer: 15.3319
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0616 | 2.0080 | 1000 | 0.3729 | 14.4012 |
0.0007 | 4.0161 | 2000 | 0.3843 | 15.0869 |
0.0005 | 6.0241 | 3000 | 0.3921 | 15.3319 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1