trained-distilbart-abs-3008

This model is a fine-tuned version of sshleifer/distilbart-xsum-12-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.4112
  • Rouge/rouge1: 0.0
  • Rouge/rouge2: 0.0
  • Rouge/rougel: 0.0
  • Rouge/rougelsum: 0.0
  • Bertscore/bertscore-precision: 0.0
  • Bertscore/bertscore-recall: 0.0
  • Bertscore/bertscore-f1: 0.0
  • Meteor: 0.0
  • Gen Len: 80.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge/rouge1 Rouge/rouge2 Rouge/rougel Rouge/rougelsum Bertscore/bertscore-precision Bertscore/bertscore-recall Bertscore/bertscore-f1 Meteor Gen Len
6.2931 1.0 109 6.4112 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 80.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
306M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for roequitz/trained-distilbart-abs-3008

Finetuned
(43)
this model