robotics-diffusion-transformer commited on
Commit
88d0373
·
verified ·
1 Parent(s): e2e485d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +162 -1
README.md CHANGED
@@ -1,3 +1,164 @@
1
  ---
2
  license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ ---
4
+ # RDT-1B
5
+
6
+ RDT-1B is a 1B-parameter (largest to date) imitation learning Diffusion Transformer pre-trained on 1M+ (largest to date) multi-robot episodes. Given a language instruction and 3-view RGB image observations, RDT can predict the next
7
+ 64 robot actions. RDT is inherently compatible with almost all kinds of modern mobile manipulators, from single-arm to dual-arm, joint to EEF, pos. to vel., and even with a mobile chassis.
8
+
9
+ <!-- ## Model Details
10
+ -->
11
+ <!-- ### Model Description
12
+
13
+ - **Model type:** [More Information Needed]
14
+ - **Language(s) (NLP):** [More Information Needed]
15
+ - **License:** [More Information Needed]
16
+ - **Finetuned from model [optional]:** [More Information Needed]
17
+ -->
18
+
19
+ ### Model Sources
20
+
21
+ <!-- Provide the basic links for the model. -->
22
+
23
+ - **Repository:** [More Information Needed]
24
+ - **Paper :** [More Information Needed]
25
+ - **Project Page:** https://rdt-robotics.github.io/rdt-robotics/
26
+
27
+ ## Uses
28
+
29
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
30
+
31
+ ### Direct Use
32
+
33
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
34
+
35
+ [More Information Needed]
36
+
37
+ ### Downstream Use [optional]
38
+
39
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
40
+
41
+ [More Information Needed]
42
+
43
+ ### Out-of-Scope Use
44
+
45
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
46
+
47
+ [More Information Needed]
48
+
49
+ ### Recommendations
50
+
51
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
52
+
53
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
54
+
55
+ ## How to Get Started with the Model
56
+
57
+ Use the code below to get started with the model.
58
+
59
+ [More Information Needed]
60
+
61
+ ## Training Details
62
+
63
+ ### Training Data
64
+
65
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
66
+
67
+ [More Information Needed]
68
+
69
+ ### Training Procedure
70
+
71
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
72
+
73
+ #### Preprocessing [optional]
74
+
75
+ [More Information Needed]
76
+
77
+
78
+ #### Training Hyperparameters
79
+
80
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
81
+
82
+ #### Speeds, Sizes, Times [optional]
83
+
84
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
85
+
86
+ [More Information Needed]
87
+
88
+ ## Evaluation
89
+
90
+ <!-- This section describes the evaluation protocols and provides the results. -->
91
+
92
+ ### Testing Data, Factors & Metrics
93
+
94
+ #### Testing Data
95
+
96
+ <!-- This should link to a Dataset Card if possible. -->
97
+
98
+ [More Information Needed]
99
+
100
+ #### Factors
101
+
102
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
103
+
104
+ [More Information Needed]
105
+
106
+ #### Metrics
107
+
108
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
109
+
110
+ [More Information Needed]
111
+
112
+ ### Results
113
+
114
+ [More Information Needed]
115
+
116
+ #### Summary
117
+
118
+
119
+
120
+ ## Model Examination [optional]
121
+
122
+ <!-- Relevant interpretability work for the model goes here -->
123
+
124
+ [More Information Needed]
125
+
126
+ ## Environmental Impact
127
+
128
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
129
+
130
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
131
+
132
+ - **Hardware Type:** [More Information Needed]
133
+ - **Hours used:** [More Information Needed]
134
+ - **Cloud Provider:** [More Information Needed]
135
+ - **Compute Region:** [More Information Needed]
136
+ - **Carbon Emitted:** [More Information Needed]
137
+
138
+ ## Technical Specifications [optional]
139
+
140
+ ### Model Architecture and Objective
141
+
142
+ [More Information Needed]
143
+
144
+ ### Compute Infrastructure
145
+
146
+ [More Information Needed]
147
+
148
+ #### Hardware
149
+
150
+ [More Information Needed]
151
+
152
+ #### Software
153
+
154
+ [More Information Needed]
155
+
156
+ ## Citation [optional]
157
+
158
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
159
+
160
+ **BibTeX:**
161
+
162
+ [More Information Needed]
163
+
164
+