Increased steps num
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 254.87 +/- 19.47
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e351bcfa3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e351bcfa440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e351bcfa4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e351bcfa560>", "_build": "<function ActorCriticPolicy._build at 0x7e351bcfa5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7e351bcfa680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e351bcfa710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e351bcfa7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e351bcfa830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e351bcfa8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e351bcfa950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e351bcfa9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e351bca4e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723723017928040431, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPzRr5RvZ09NRzSPOLGP74TNCG8OIdWvQAAAAAAAAAAKrGvPsI30z46PCm+BuSFvvqBcD1N5li9AAAAAAAAAACteS0+dIKOvH0eaju/sKu5oEn5vX7pnboAAIA/AACAP7p4AL6vdW8/+tNbvjb2BL8TqAG+PhimPQAAAAAAAAAARkJDvlS3FT7+RR2845+PvrNYHL2d5OS6AAAAAAAAAABwCoU+wkVOP05msT7BYBm/jVKgPrWnWr0AAAAAAAAAAOvBi75xSze7PSpstJYOj7IdJd085fbXMwAAgD8AAIA/xu1OPjXqPT7+z0W+9AV+vlRA6bzeG9a7AAAAAAAAAAAmpU2+ws9pPsrJeT0XuWq+2fLDuvaPJLwAAAAAAAAAAMDNhb3Zqio/6Kx+vdepyL5wjsC8i3l9PAAAAAAAAAAAjfcuvo9cRLwiDCe7wE1zuedDrD0nGUc6AACAPwAAgD+A+FW9TkyEPxPC9b2dOQy/arYGvWuCpDwAAAAAAAAAAHbAW777V1M/0CVIvopF8b4sH++9VMezPQAAAAAAAAAAbemmvmmMJT2NLpY7IBAgOy4TUL64ZC69AACAPwAAgD8V676+9wKgP40nGb8tJfa+w/+Vvj8iAT0AAAAAAAAAAFp0jb3faqE/qgNTvk+hCb+2kJO9qAgJvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE3DPjXFtOMAWyUS/6MAXSUR0CimOLOiWVvdX2UKGgGR0Bcshx5s0pFaAdN6ANoCEdAopnkMiKR+3V9lChoBkdAcVX2nsLORmgHS9FoCEdAopsoSrYGuHV9lChoBkdAb+6QU5+6RWgHS+doCEdAopuO7OE/S3V9lChoBkdAcP1Df3vhImgHTQQBaAhHQKKbxZezD4x1fZQoaAZHQGEuY4Qz1sdoB03oA2gIR0Cim9xw6ySndX2UKGgGR0AwVsIVuaWpaAdL3WgIR0CinMEYfnwHdX2UKGgGR0BwRu+UQkHEaAdL1WgIR0CinTzisGPgdX2UKGgGR0BwabE74i5eaAdL4GgIR0CinV1k+X7cdX2UKGgGR0Buuhw++ueSaAdNBQFoCEdAoq+1EAo5P3V9lChoBkdAbmu717IDHWgHS/5oCEdAorCumUGFBnV9lChoBkdAYu41XvH932gHTegDaAhHQKKw3DG96C11fZQoaAZHQG2AXBYV6/toB02KAWgIR0CisaqnWJ7+dX2UKGgGR0BwvCTibUgCaAdNBwFoCEdAorHZjH4oJHV9lChoBkdAYFLVe8f3e2gHTegDaAhHQKKyDQWN3np1fZQoaAZHQHBulJlJ6IFoB0vaaAhHQKKynAfuCwt1fZQoaAZHQHCXcKb8WKxoB0v7aAhHQKKyqm1IAfd1fZQoaAZHQG20BkI5YHRoB0vkaAhHQKKyuXHim2t1fZQoaAZHQGKm7LMcIZ9oB03oA2gIR0Cisy61b7j1dX2UKGgGR0BxKijIq9XcaAdL92gIR0CitEV1fVqfdX2UKGgGR0BxXKdZq20BaAdNEQFoCEdAorRl6LOzIHV9lChoBkdAcrEqoIfKZGgHS+loCEdAorVEi6g/T3V9lChoBkdAbwtWOIZZS2gHS+xoCEdAorWBe9i+c3V9lChoBkdAcab3xWkrPWgHTSQBaAhHQKK1gQAdXDF1fZQoaAZHQGAW86V+qipoB03oA2gIR0Citk/igkC4dX2UKGgGR0Bvo+5BkZrIaAdL7WgIR0CitlUiyIHkdX2UKGgGR0BvHQrMC9ytaAdL7WgIR0CiuJ5a3ZwodX2UKGgGR0Bpvf+GXXyzaAdNFwFoCEdAorjxzNliB3V9lChoBkdAcAq3gDRtxmgHTS8BaAhHQKK5xTa0x/N1fZQoaAZHwCdd9fCyhSNoB0utaAhHQKK6XItlI3B1fZQoaAZHQG/FN2s7uD1oB0v0aAhHQKK65XnyNGV1fZQoaAZHQGKQ+XiR4hVoB03oA2gIR0Ciuu8YZVGTdX2UKGgGR0BPnbLU1AJLaAdL0GgIR0CivKDxTbWVdX2UKGgGR0BxcYsSTQmeaAdL+mgIR0CivfQsXizcdX2UKGgGR0BoHbUiILw4aAdNRgFoCEdAor6gPAfuC3V9lChoBkdAcaGAXEZR9GgHTYUBaAhHQKK+6lruYyB1fZQoaAZHQHASnVwxWT5oB0v2aAhHQKK/0W+GoJl1fZQoaAZHQG94M2vStvJoB0vmaAhHQKLBMmG/N7l1fZQoaAZHQGwE9mpVCHBoB00VAWgIR0CiwfiS7oStdX2UKGgGR0BDJw66reZYaAdLqmgIR0Ciwi6x5cC6dX2UKGgGR0BwxnaufVZtaAdL62gIR0CiwtJT2nKodX2UKGgGR0BzDYID5j6OaAdNTAFoCEdAosL6c0+C9XV9lChoBkdAbznmTTvy9WgHS+1oCEdAosSlc+qzaHV9lChoBkdAcb4xBE8aGmgHS+ZoCEdAosTGrwOOKnV9lChoBkdAYY2Vs1sLv2gHTegDaAhHQKLGY+C9RJp1fZQoaAZHQHCsbYf4h2ZoB00QAWgIR0CixuOg6EJ0dX2UKGgGR0BCC9ZA6dUbaAdLw2gIR0Cix/undfsvdX2UKGgGR0Bh8+mR/3FlaAdN6ANoCEdAoshFFDv3J3V9lChoBkdAblip++dsi2gHS9toCEdAosjNIXj2jHV9lChoBkdAcQMVLBbfQGgHTSwBaAhHQKLJIFyq+8J1fZQoaAZHQHEOiQPqcExoB00IAWgIR0CiySz4+KTCdX2UKGgGR0Bt2dAmiQDFaAdL32gIR0CiynmJ3xFzdX2UKGgGR0BvqlDSgGr0aAdL+2gIR0Ciy1Bf0EowdX2UKGgGR0Bg+sG5c1O1aAdN6ANoCEdAostcxfv4NHV9lChoBkdAVKBDD0lJH2gHTegDaAhHQKLLmDZDiOx1fZQoaAZHQGHBHgHeJpFoB03oA2gIR0CizF7fHggpdX2UKGgGR0BxLSW0JF9baAdL+mgIR0CizKisfaHsdX2UKGgGR0BuVT0cwQDnaAdL7mgIR0CizMxsuWa+dX2UKGgGR0BwrSvzOHFhaAdL2mgIR0CizTn+ZPVNdX2UKGgGR0BwvE8wHqu9aAdLzmgIR0Cize5wwTM8dX2UKGgGR0BjbtqDbrTqaAdN6ANoCEdAos+fGn4wiHV9lChoBkdAZy/hWo3rEGgHTRIBaAhHQKLRztbcGkh1fZQoaAZHQD3rEaVD8cdoB0uvaAhHQKLShSYw7DF1fZQoaAZHQHCVnhn8KohoB00fAWgIR0Ci0qxx1gYxdX2UKGgGR0BxOnO0LMLXaAdL+2gIR0Ci0q+E7GNrdX2UKGgGR0Bw474/NZ/1aAdL/WgIR0Ci0zmcWj46dX2UKGgGR0BhGK7kGRmsaAdN6ANoCEdAotN07W/ag3V9lChoBkdAcgTgHNX5nGgHTWwBaAhHQKLTx7m+0w91fZQoaAZHQHJ+U/8l5W1oB00PAWgIR0Ci0/iLuQZGdX2UKGgGR0BuRXIMjNY9aAdNVQFoCEdAotQPIKc/dXV9lChoBkdAcK4MSbpeNWgHTRgBaAhHQKLUq/0NBnl1fZQoaAZHQGKqySmqHXVoB03oA2gIR0Ci1QBZZB9kdX2UKGgGR0BvMPRu0kWzaAdL5GgIR0Ci1e98JD3NdX2UKGgGR0A8OzIFNcnmaAdLpGgIR0Ci1uStV7x/dX2UKGgGR0BwOixQizLPaAdNYwJoCEdAotfHRNRFZ3V9lChoBkdAbZCUOd5IH2gHS/5oCEdAoti8YQ8OkXV9lChoBkdAPFYmkWRA8mgHS9loCEdAotlSesgdO3V9lChoBkdAcTvCcwxnF2gHS+JoCEdAotlzTBqKxnV9lChoBkdAbjsWEbo8p2gHS/xoCEdAotl+wTufEnV9lChoBkdAcb5IGhVU/GgHS/ZoCEdAotmDImw7knV9lChoBkdAcEdwC8vmHWgHS/toCEdAotnLwlSjxnV9lChoBkdAcWhvqC6H02gHTc8CaAhHQKLadeFcpsp1fZQoaAZHQHFKL/S6UaBoB01OAWgIR0Ci2rwYUFjedX2UKGgGR0Bw00R/ViF1aAdL22gIR0Ci2te1jRUndX2UKGgGR0BiGFnEl3QlaAdN6ANoCEdAotrmHi3ocXV9lChoBkdAcl3fZElVtGgHTRkBaAhHQKLbNFhG6PN1fZQoaAZHQHAVxHww0wdoB00vAWgIR0Ci21Xg9/z8dX2UKGgGR0Buzbs2NvOyaAdL+GgIR0Ci3G65PM0QdX2UKGgGR0BuhM/t6X0HaAdL7mgIR0Ci3PgHVwxWdX2UKGgGR0BxFxWKdhAoaAdL5WgIR0Ci3VKYAsCldX2UKGgGR0Bw0ZrdnCfpaAdL6GgIR0Ci3YCExqO+dX2UKGgGR0Bx7tdNWU8naAdL9WgIR0Ci3cxhUipvdX2UKGgGR0Bvc8NKAavSaAdNAAFoCEdAot38VafSQnV9lChoBkdAaTz84PwuumgHTQABaAhHQKLe/EBsANp1fZQoaAZHQHDhQLiMo+hoB0v7aAhHQKLfVNdJJ5F1fZQoaAZHQHDEPukUKzBoB0vnaAhHQKLfZSP2f051fZQoaAZHQGwzw7T2FnJoB00LAWgIR0Ci343tBv74dX2UKGgGR0BtUgiqyWzGaAdNBgFoCEdAot+ic0+C9XV9lChoBkdAbz/d0JWvKWgHS+1oCEdAot+uiJwbVHV9lChoBkdAYD1uhK15SmgHTegDaAhHQKLfxI5HVgB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d76d0551cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d76d0551d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d76d0551e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d76d0551ea0>", "_build": "<function ActorCriticPolicy._build at 0x7d76d0551f30>", "forward": "<function ActorCriticPolicy.forward at 0x7d76d0551fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d76d0552050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d76d05520e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d76d0552170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d76d0552200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d76d0552290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d76d0552320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d76d04f4c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723751498200673559, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOiOr0M/JU+xPgLPpwliL5tRhG8lbCZvQAAAAAAAAAAetJZvjTBPj81ni8+guFUvo93ezxMnyI+AAAAAAAAAACgKhQ+/jSXP9tFZD4L35q++417PmZXZLoAAAAAAAAAAI0v8T06FW0/ZiCoPO7Tjb7CQ689/vZPPQAAAAAAAAAA89tDPqpXXT5r4HO92X0/vvmXqrymW5U9AAAAAAAAAAAAIJS7uLChu1ZaYLzvOpI8IQwAPXqQeL0AAIA/AACAPxNpn753xCA/Ilt9PsFHUL4ZWpG9HWRlPQAAAAAAAAAAM+u9vQSqoT8OQWO+jXSdvpF4/r1g27u9AAAAAAAAAAAACbE9HwWYub2W7jqHjxK3qgoPO3Y307kAAAAAAACAPzOLcbyPvnu6St8uM+P/My/S2pY6LqjTswAAgD8AAIA/5u1DPcOJb7oy1as41+rDM81YGDpyqMi3AACAPwAAgD/Nbd08VB2MvH5DPbshE1o9M0cFvbLlgzwAAIA/AACAPzOj8D1A0iQ/zkw9vfRGlb4Tl9q7C383ugAAAAAAAAAA81fbPVwLYbqgSSC3CdlPskzaQTs1hTk2AACAPwAAgD8NEKw9SDWIukGTLjhmIYyxgu8cuyiCR7cAAIA/AACAPwCrND1SwNq5A+M0uI5WyLMjhWI7NehUNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGULdTYNAkeMAWyUTegDjAF0lEdAlgH7ONYKY3V9lChoBkdAcK52bXpW3mgHTZ0BaAhHQJYCG3mV7hN1fZQoaAZHQG/0XirDIiloB01vAmgIR0CWAtOARTS9dX2UKGgGR0BkkQF9roGIaAdN6ANoCEdAlhNBsImgJ3V9lChoBkdALyISUTtb92gHTQcBaAhHQJYT0LDye7N1fZQoaAZHQEAhy+6Ae7toB00ZAWgIR0CWE/YCyQgcdX2UKGgGR0BuYDgAIY3vaAdNHAJoCEdAlhh+JP69CnV9lChoBkdAa7uuSOinHmgHTfYBaAhHQJYZc0HhS+B1fZQoaAZHQHIFViWmgrZoB01oAmgIR0CWIaVTrE9/dX2UKGgGR0BCyfGMn7YTaAdL1GgIR0CWIhhEBsAOdX2UKGgGR0BcJFl05lvqaAdN6ANoCEdAlibsrEtNBXV9lChoBkdAcOLBuGbkO2gHTd4DaAhHQJYtRHJ9y951fZQoaAZHQHBIxcAzYVZoB01vAmgIR0CWL6c+aBqcdX2UKGgGR0BxEeIUJv5yaAdNSAFoCEdAli+2ce8wpXV9lChoBkdAZKemLtNSImgHTegDaAhHQJZLzLbHp8p1fZQoaAZHQGb45LytmthoB03oA2gIR0CWTAvoNd7fdX2UKGgGR0BwACVpsXSCaAdNpAFoCEdAlk6ElzEJjXV9lChoBkdAZiZgBtDUmWgHTegDaAhHQJZQ5UvPC2t1fZQoaAZHQGVG+Ad4mkZoB03oA2gIR0CWUf5MlC1JdX2UKGgGR0BwnGm/FirlaAdNNwJoCEdAllIb0rbxmXV9lChoBkdAYGsxEfDDTGgHTegDaAhHQJZZn8dgfEJ1fZQoaAZHQGUBptSAH3VoB03oA2gIR0CWX6llbu+idX2UKGgGR0BlShuEVWS2aAdN6ANoCEdAlmDUD+zdDnV9lChoBkdAb9Ajt5UtI2gHTeQBaAhHQJZnZWuHN5d1fZQoaAZHQG0aeaBqbjNoB03EAmgIR0CWacNXo1UEdX2UKGgGR0Bh+lSn+AEuaAdN6ANoCEdAlm/SBwuM/HV9lChoBkdAchxWuHN5dGgHTbYCaAhHQJZ38JTl1bJ1fZQoaAZHQHFH+uaF23doB01qAWgIR0CWe7T7VJ+VdX2UKGgGR0ByIdSUC7sfaAdNlwJoCEdAln630TURWnV9lChoBkdAZmOyhzvJBGgHTegDaAhHQJaB2Ymb9ZR1fZQoaAZHQHFhF7Y02tNoB03aAWgIR0CWhRr9VFQVdX2UKGgGR0Bm8ATTOPeYaAdN6ANoCEdAloZWnTAnD3V9lChoBkdAbczyDqW1MWgHTaoBaAhHQJaKHKdQO4J1fZQoaAZHQF8mnGsFMZhoB03oA2gIR0CWi4wI+nqFdX2UKGgGR0BEpyuZCv5haAdL9WgIR0CWjEQdjoZAdX2UKGgGR0BiBhg5R0lraAdN6ANoCEdAlpEWYSg5BHV9lChoBkdAYkOn+hoM8mgHTegDaAhHQJaRRWOp84R1fZQoaAZHQGHTUNSZSeloB03oA2gIR0CWprg5BC2MdX2UKGgGR0BwwYpy6tknaAdN0gFoCEdAlqgaOxSpBHV9lChoBkdAXOVdkauOj2gHTegDaAhHQJaoHGkvboN1fZQoaAZHQGjtBdld1MdoB03oA2gIR0CWqEblijL0dX2UKGgGR0BwdHByjpLVaAdNwQJoCEdAlqoRS1mapnV9lChoBkdANpkG3WnTAmgHS/9oCEdAlqxXB55Z83V9lChoBkdAYBrsCT2WZGgHTegDaAhHQJaxGJZW7vp1fZQoaAZHQG0/Tyz5XU9oB016AWgIR0CWtmP2wmmcdX2UKGgGR0BwlROgxrSFaAdNDwNoCEdAlrgbiIcin3V9lChoBkdAcD8mYSg5BGgHTR8CaAhHQJa5Mc94eLh1fZQoaAZHQEFX2g3974VoB00LAWgIR0CWum5OafBfdX2UKGgGR0BweKLdepn6aAdNSAFoCEdAlr3nB1s+FHV9lChoBkdAb67oZhrnDGgHTTgCaAhHQJa/P1RLsa91fZQoaAZHQHFkfmxMWXVoB03iAmgIR0CWwcLzPKMedX2UKGgGR0Bwyn0HyEteaAdNCAJoCEdAlsPxCx/us3V9lChoBkdAbyTV1fVqe2gHTSICaAhHQJbQFAeJYT11fZQoaAZHQGJewDFId2hoB03oA2gIR0CW0Be1rqMWdX2UKGgGR0BxN3D/EOy3aAdNVgFoCEdAltA4L9deIHV9lChoBkdAbwJw71ZkkWgHTbIBaAhHQJbRrjABT4t1fZQoaAZHQHAuHztkWh1oB00KAmgIR0CW0s+zMRpUdX2UKGgGR0Bvl7BXS0BwaAdNhAJoCEdAltQQvg3tKXV9lChoBkdAZVNapxWDH2gHTegDaAhHQJbW/EfkmyB1fZQoaAZHQGzSn3lCCz1oB00SAmgIR0CW2QL8rI5pdX2UKGgGR0BD9q4QSSNgaAdNAwFoCEdAluASfYjB23V9lChoBkdAbpyAYHgP3GgHTXcCaAhHQJbg4T101ZV1fZQoaAZHQGPglIVdonNoB03oA2gIR0CW40/7iyY5dX2UKGgGR0BmuC6tknTiaAdN6ANoCEdAlvyho7FKkHV9lChoBkdAZeIXPZ7HAGgHTegDaAhHQJb9zEFW4mV1fZQoaAZHQHCsp9Vmz0JoB010AWgIR0CW/h9qUNaydX2UKGgGR0BwGEUXYUWVaAdNoQFoCEdAlwIiaEzwdHV9lChoBkdAck0DgqEvkGgHTesCaAhHQJcCnFNtZV51fZQoaAZHQE8zRtxdY4hoB0vSaAhHQJcCzKHO8kF1fZQoaAZHQDGpBsyi22JoB0vVaAhHQJcDiRGMGX51fZQoaAZHQG3gZvcafjFoB03kAmgIR0CXCExz7uUmdX2UKGgGR0BuukcABDG+aAdN9AFoCEdAlwhsgZCOWHV9lChoBkdAcFd1lGwzL2gHTaUBaAhHQJcIznzQNTd1fZQoaAZHQHEYTsUqQRxoB03OAWgIR0CXCRl2vB8AdX2UKGgGR0BB3N5UtI07aAdLzWgIR0CXCTn/kvK2dX2UKGgGR0BvYigsbvPUaAdNjQJoCEdAlwyz5ftx/HV9lChoBkdAbWgLIgeRxWgHTXIBaAhHQJcNdgy/KyR1fZQoaAZHQG8QMqSX+l1oB02qAmgIR0CXDjQhwEQodX2UKGgGR0Bjs9g0CRwIaAdN6ANoCEdAlxDlawD/2nV9lChoBkdAY1dE9dNWVGgHTegDaAhHQJcTMhStNi91fZQoaAZHQDoXrUsnRb9oB0vnaAhHQJcUIz3yqdZ1fZQoaAZHQG3TPZh8YyhoB02uAWgIR0CXFW77bcoIdX2UKGgGR0BxYPHGS6lMaAdNWQFoCEdAlxXoREnb7HV9lChoBkdATkyakRBeHGgHS7FoCEdAlxhbR0EHMXV9lChoBkdAcCMBnzxwymgHTY8BaAhHQJcYqwfQrtp1fZQoaAZHQG7tygPEsJ9oB004AWgIR0CXGSnRsuWbdX2UKGgGR0Bv4gy0rsjWaAdN5gFoCEdAlxnKKUFB6nV9lChoBkdAcXDpe/pMYmgHTV4BaAhHQJcbupo9LYh1fZQoaAZHQHDC9dRiw0RoB02cAWgIR0CXIN0ZWJaadX2UKGgGR0Bt8PMfRu0kaAdNdwFoCEdAlyNpDeCTU3V9lChoBkdAcL+AmReTmmgHTXwBaAhHQJck5+OOsDJ1fZQoaAZHQFBzsrupjtpoB0vmaAhHQJcnSagElmh1fZQoaAZHQHKi7Egntv5oB01WAWgIR0CXK50uDjBEdX2UKGgGR0BtNamIj4YaaAdNcgJoCEdAly4p39rGi3V9lChoBkdAcQ/KsMiKSGgHTUsBaAhHQJcuSYv38Gd1fZQoaAZHQHHIG/nGKhtoB01DAWgIR0CXLlmKIi1RdX2UKGgGR0BwJrLzPKMeaAdNtwFoCEdAlzBOV5a/y3V9lChoBkdAcSdw/xDst2gHTcEBaAhHQJcyTPnjhk11fZQoaAZHQG4padMCcPRoB003AmgIR0CXNBUxmCiAdX2UKGgGR0BwSWhpQDV6aAdNEAJoCEdAlzQ/CEYfn3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae525b07e895b9f70aa9dbe9d96e8ca461bc6f37547000cef62b9e667281c464
|
3 |
+
size 147565
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
@@ -77,9 +77,9 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d76d0551cf0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d76d0551d80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d76d0551e10>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d76d0551ea0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d76d0551f30>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d76d0551fc0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d76d0552050>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d76d05520e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d76d0552170>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d76d0552200>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d76d0552290>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d76d0552320>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d76d04f4c00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1723751498200673559,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOiOr0M/JU+xPgLPpwliL5tRhG8lbCZvQAAAAAAAAAAetJZvjTBPj81ni8+guFUvo93ezxMnyI+AAAAAAAAAACgKhQ+/jSXP9tFZD4L35q++417PmZXZLoAAAAAAAAAAI0v8T06FW0/ZiCoPO7Tjb7CQ689/vZPPQAAAAAAAAAA89tDPqpXXT5r4HO92X0/vvmXqrymW5U9AAAAAAAAAAAAIJS7uLChu1ZaYLzvOpI8IQwAPXqQeL0AAIA/AACAPxNpn753xCA/Ilt9PsFHUL4ZWpG9HWRlPQAAAAAAAAAAM+u9vQSqoT8OQWO+jXSdvpF4/r1g27u9AAAAAAAAAAAACbE9HwWYub2W7jqHjxK3qgoPO3Y307kAAAAAAACAPzOLcbyPvnu6St8uM+P/My/S2pY6LqjTswAAgD8AAIA/5u1DPcOJb7oy1as41+rDM81YGDpyqMi3AACAPwAAgD/Nbd08VB2MvH5DPbshE1o9M0cFvbLlgzwAAIA/AACAPzOj8D1A0iQ/zkw9vfRGlb4Tl9q7C383ugAAAAAAAAAA81fbPVwLYbqgSSC3CdlPskzaQTs1hTk2AACAPwAAgD8NEKw9SDWIukGTLjhmIYyxgu8cuyiCR7cAAIA/AACAPwCrND1SwNq5A+M0uI5WyLMjhWI7NehUNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGULdTYNAkeMAWyUTegDjAF0lEdAlgH7ONYKY3V9lChoBkdAcK52bXpW3mgHTZ0BaAhHQJYCG3mV7hN1fZQoaAZHQG/0XirDIiloB01vAmgIR0CWAtOARTS9dX2UKGgGR0BkkQF9roGIaAdN6ANoCEdAlhNBsImgJ3V9lChoBkdALyISUTtb92gHTQcBaAhHQJYT0LDye7N1fZQoaAZHQEAhy+6Ae7toB00ZAWgIR0CWE/YCyQgcdX2UKGgGR0BuYDgAIY3vaAdNHAJoCEdAlhh+JP69CnV9lChoBkdAa7uuSOinHmgHTfYBaAhHQJYZc0HhS+B1fZQoaAZHQHIFViWmgrZoB01oAmgIR0CWIaVTrE9/dX2UKGgGR0BCyfGMn7YTaAdL1GgIR0CWIhhEBsAOdX2UKGgGR0BcJFl05lvqaAdN6ANoCEdAlibsrEtNBXV9lChoBkdAcOLBuGbkO2gHTd4DaAhHQJYtRHJ9y951fZQoaAZHQHBIxcAzYVZoB01vAmgIR0CWL6c+aBqcdX2UKGgGR0BxEeIUJv5yaAdNSAFoCEdAli+2ce8wpXV9lChoBkdAZKemLtNSImgHTegDaAhHQJZLzLbHp8p1fZQoaAZHQGb45LytmthoB03oA2gIR0CWTAvoNd7fdX2UKGgGR0BwACVpsXSCaAdNpAFoCEdAlk6ElzEJjXV9lChoBkdAZiZgBtDUmWgHTegDaAhHQJZQ5UvPC2t1fZQoaAZHQGVG+Ad4mkZoB03oA2gIR0CWUf5MlC1JdX2UKGgGR0BwnGm/FirlaAdNNwJoCEdAllIb0rbxmXV9lChoBkdAYGsxEfDDTGgHTegDaAhHQJZZn8dgfEJ1fZQoaAZHQGUBptSAH3VoB03oA2gIR0CWX6llbu+idX2UKGgGR0BlShuEVWS2aAdN6ANoCEdAlmDUD+zdDnV9lChoBkdAb9Ajt5UtI2gHTeQBaAhHQJZnZWuHN5d1fZQoaAZHQG0aeaBqbjNoB03EAmgIR0CWacNXo1UEdX2UKGgGR0Bh+lSn+AEuaAdN6ANoCEdAlm/SBwuM/HV9lChoBkdAchxWuHN5dGgHTbYCaAhHQJZ38JTl1bJ1fZQoaAZHQHFH+uaF23doB01qAWgIR0CWe7T7VJ+VdX2UKGgGR0ByIdSUC7sfaAdNlwJoCEdAln630TURWnV9lChoBkdAZmOyhzvJBGgHTegDaAhHQJaB2Ymb9ZR1fZQoaAZHQHFhF7Y02tNoB03aAWgIR0CWhRr9VFQVdX2UKGgGR0Bm8ATTOPeYaAdN6ANoCEdAloZWnTAnD3V9lChoBkdAbczyDqW1MWgHTaoBaAhHQJaKHKdQO4J1fZQoaAZHQF8mnGsFMZhoB03oA2gIR0CWi4wI+nqFdX2UKGgGR0BEpyuZCv5haAdL9WgIR0CWjEQdjoZAdX2UKGgGR0BiBhg5R0lraAdN6ANoCEdAlpEWYSg5BHV9lChoBkdAYkOn+hoM8mgHTegDaAhHQJaRRWOp84R1fZQoaAZHQGHTUNSZSeloB03oA2gIR0CWprg5BC2MdX2UKGgGR0BwwYpy6tknaAdN0gFoCEdAlqgaOxSpBHV9lChoBkdAXOVdkauOj2gHTegDaAhHQJaoHGkvboN1fZQoaAZHQGjtBdld1MdoB03oA2gIR0CWqEblijL0dX2UKGgGR0BwdHByjpLVaAdNwQJoCEdAlqoRS1mapnV9lChoBkdANpkG3WnTAmgHS/9oCEdAlqxXB55Z83V9lChoBkdAYBrsCT2WZGgHTegDaAhHQJaxGJZW7vp1fZQoaAZHQG0/Tyz5XU9oB016AWgIR0CWtmP2wmmcdX2UKGgGR0BwlROgxrSFaAdNDwNoCEdAlrgbiIcin3V9lChoBkdAcD8mYSg5BGgHTR8CaAhHQJa5Mc94eLh1fZQoaAZHQEFX2g3974VoB00LAWgIR0CWum5OafBfdX2UKGgGR0BweKLdepn6aAdNSAFoCEdAlr3nB1s+FHV9lChoBkdAb67oZhrnDGgHTTgCaAhHQJa/P1RLsa91fZQoaAZHQHFkfmxMWXVoB03iAmgIR0CWwcLzPKMedX2UKGgGR0Bwyn0HyEteaAdNCAJoCEdAlsPxCx/us3V9lChoBkdAbyTV1fVqe2gHTSICaAhHQJbQFAeJYT11fZQoaAZHQGJewDFId2hoB03oA2gIR0CW0Be1rqMWdX2UKGgGR0BxN3D/EOy3aAdNVgFoCEdAltA4L9deIHV9lChoBkdAbwJw71ZkkWgHTbIBaAhHQJbRrjABT4t1fZQoaAZHQHAuHztkWh1oB00KAmgIR0CW0s+zMRpUdX2UKGgGR0Bvl7BXS0BwaAdNhAJoCEdAltQQvg3tKXV9lChoBkdAZVNapxWDH2gHTegDaAhHQJbW/EfkmyB1fZQoaAZHQGzSn3lCCz1oB00SAmgIR0CW2QL8rI5pdX2UKGgGR0BD9q4QSSNgaAdNAwFoCEdAluASfYjB23V9lChoBkdAbpyAYHgP3GgHTXcCaAhHQJbg4T101ZV1fZQoaAZHQGPglIVdonNoB03oA2gIR0CW40/7iyY5dX2UKGgGR0BmuC6tknTiaAdN6ANoCEdAlvyho7FKkHV9lChoBkdAZeIXPZ7HAGgHTegDaAhHQJb9zEFW4mV1fZQoaAZHQHCsp9Vmz0JoB010AWgIR0CW/h9qUNaydX2UKGgGR0BwGEUXYUWVaAdNoQFoCEdAlwIiaEzwdHV9lChoBkdAck0DgqEvkGgHTesCaAhHQJcCnFNtZV51fZQoaAZHQE8zRtxdY4hoB0vSaAhHQJcCzKHO8kF1fZQoaAZHQDGpBsyi22JoB0vVaAhHQJcDiRGMGX51fZQoaAZHQG3gZvcafjFoB03kAmgIR0CXCExz7uUmdX2UKGgGR0BuukcABDG+aAdN9AFoCEdAlwhsgZCOWHV9lChoBkdAcFd1lGwzL2gHTaUBaAhHQJcIznzQNTd1fZQoaAZHQHEYTsUqQRxoB03OAWgIR0CXCRl2vB8AdX2UKGgGR0BB3N5UtI07aAdLzWgIR0CXCTn/kvK2dX2UKGgGR0BvYigsbvPUaAdNjQJoCEdAlwyz5ftx/HV9lChoBkdAbWgLIgeRxWgHTXIBaAhHQJcNdgy/KyR1fZQoaAZHQG8QMqSX+l1oB02qAmgIR0CXDjQhwEQodX2UKGgGR0Bjs9g0CRwIaAdN6ANoCEdAlxDlawD/2nV9lChoBkdAY1dE9dNWVGgHTegDaAhHQJcTMhStNi91fZQoaAZHQDoXrUsnRb9oB0vnaAhHQJcUIz3yqdZ1fZQoaAZHQG3TPZh8YyhoB02uAWgIR0CXFW77bcoIdX2UKGgGR0BxYPHGS6lMaAdNWQFoCEdAlxXoREnb7HV9lChoBkdATkyakRBeHGgHS7FoCEdAlxhbR0EHMXV9lChoBkdAcCMBnzxwymgHTY8BaAhHQJcYqwfQrtp1fZQoaAZHQG7tygPEsJ9oB004AWgIR0CXGSnRsuWbdX2UKGgGR0Bv4gy0rsjWaAdN5gFoCEdAlxnKKUFB6nV9lChoBkdAcXDpe/pMYmgHTV4BaAhHQJcbupo9LYh1fZQoaAZHQHDC9dRiw0RoB02cAWgIR0CXIN0ZWJaadX2UKGgGR0Bt8PMfRu0kaAdNdwFoCEdAlyNpDeCTU3V9lChoBkdAcL+AmReTmmgHTXwBaAhHQJck5+OOsDJ1fZQoaAZHQFBzsrupjtpoB0vmaAhHQJcnSagElmh1fZQoaAZHQHKi7Egntv5oB01WAWgIR0CXK50uDjBEdX2UKGgGR0BtNamIj4YaaAdNcgJoCEdAly4p39rGi3V9lChoBkdAcQ/KsMiKSGgHTUsBaAhHQJcuSYv38Gd1fZQoaAZHQHHIG/nGKhtoB01DAWgIR0CXLlmKIi1RdX2UKGgGR0BwJrLzPKMeaAdNtwFoCEdAlzBOV5a/y3V9lChoBkdAcSdw/xDst2gHTcEBaAhHQJcyTPnjhk11fZQoaAZHQG4padMCcPRoB003AmgIR0CXNBUxmCiAdX2UKGgGR0BwSWhpQDV6aAdNEAJoCEdAlzQ/CEYfn3VlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87978
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23d5a435f718e215c491fcd696e53e73f484e08d5e68e0a298bfc84a0fa9b57b
|
3 |
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43634
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c8a87af9452783fa966478f531838354fa6a87698dcc1cab56eba9c57da0567
|
3 |
size 43634
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 254.87438179999998, "std_reward": 19.4747084935716, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-15T20:17:24.100271"}
|