Increased steps num
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +17 -17
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 216.67 +/- 74.33
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79d729b72830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79d729b728c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79d729b72950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79d729b729e0>", "_build": "<function ActorCriticPolicy._build at 0x79d729b72a70>", "forward": "<function ActorCriticPolicy.forward at 0x79d729b72b00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79d729b72b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79d729b72c20>", "_predict": "<function ActorCriticPolicy._predict at 0x79d729b72cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79d729b72d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79d729b72dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79d729b72e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79d729b1adc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723718782136696475, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANrtK77whIM+d340Plp3Vb6McPk6mtHAPAAAAAAAAAAAGtVcPY8+a7qjaVo11I7gMKRYVTuUPoK0AACAPwAAgD9GHNg+YJisPjD4P76pxve9nPw8PNdfkjwAAAAAAAAAADNjST7DtWG8FR+wOp++0bjbAuS9kBvfuQAAgD8AAIA/U3Exvo7CgLx6tLs6HZIGOc405D3r5PO5AACAPwAAgD/yxbO+D1WzPkbf0D2be2u+OaAqvR57Ij0AAAAAAAAAALr5EL6F4MS78heDvJxprrrk5R49U8qTOwAAgD8AAIA/5pgJPeH47rpbzAU8IcEIPNvkOruIj/g8AACAPwAAgD+AvDw+/XkfPMgH/7yf+YY8O5bMPdCfoL0AAIA/AACAP00QJj725FG8RXReOxmMe7nSrrG9huGQugAAgD8AAIA/AMPEvGTNRj6KFeo98kEpvmZKmjyF0b48AAAAAAAAAAAzlUa9j+pVutvNrzyx3do8kiM0O7tauz0AAIA/AACAP3O1/j3cw2A/XTDoPc5sb756ykc91/+MuwAAAAAAAAAAs3bAvRi/8j2imks+09otviHLTz02twy9AAAAAAAAAABDFOi+2XlqP5NSf75KrZe+C+gnvoVyyTwAAAAAAAAAAACmQT6MA50/oMgyP+BeqL4m/zc+ZXkvPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG/rP5HmRvGMAWyUTU0BjAF0lEdAoOonKISDiHV9lChoBkdAbWoslsxfwGgHTaYBaAhHQKDqufbKzRh1fZQoaAZHQHClhllK9PFoB00vAWgIR0Cg6s77bcoIdX2UKGgGR0A164KhL5ARaAdNFgFoCEdAoOrpMN+b3HV9lChoBkdAURgZtNzr/2gHTegDaAhHQKDsUxUNrj51fZQoaAZHQD3KnjyWiURoB00TAWgIR0Cg7N5DiOvMdX2UKGgGR0Bs3Bswco6TaAdNqgFoCEdAoOz6TY/Vy3V9lChoBkdAW/BvZRKpUGgHTegDaAhHQKDtBMs6JZZ1fZQoaAZHQHGl/Cl7+kxoB01OAWgIR0Cg7RU9hZyNdX2UKGgGR0BvaZz90ihWaAdN1gFoCEdAoO0hnFo+OnV9lChoBkdAbuPXQMQVbmgHTXEBaAhHQKDtvxKg7HR1fZQoaAZHQG7INjkMkQhoB01RAWgIR0Cg7b7cwg1WdX2UKGgGR0BrX2xlg+hXaAdNZAFoCEdAoO3MCo0hvHV9lChoBkdAbsi1MM7U5WgHTVsBaAhHQKDt2q7yxzJ1fZQoaAZHQG6HhZIQOFxoB00AAmgIR0Cg7t3ZXdTHdX2UKGgGR0BxON+w1R+CaAdNUwFoCEdAoPHRCSidrnV9lChoBkdAW6yBDohY/2gHTegDaAhHQKDyAkdmxt51fZQoaAZHQGzMI3zcynFoB02dAWgIR0Cg81JZGKAKdX2UKGgGR0BvH3uXu3MIaAdNSAFoCEdAoPSsqaw2VHV9lChoBkdAbYrSR8twrGgHTb8BaAhHQKD1Nf+CK791fZQoaAZHQGrF3kHUtqZoB015AWgIR0Cg9UL+PzWgdX2UKGgGR0BwJzINmUW3aAdNOgFoCEdAoPW6XY150XV9lChoBkdAcO+tpVS4v2gHTdEBaAhHQKD1wHs1KoR1fZQoaAZHQG2l+WnjyWloB01/AWgIR0Cg9iEidJ8OdX2UKGgGR0BpdPV5KODKaAdNXQFoCEdAoPZTzd1uBXV9lChoBkfAO7gckt29tmgHTYwBaAhHQKD2XPAwfyR1fZQoaAZHQG3pgD7qIJtoB01jAWgIR0Cg9my7oStedX2UKGgGR0BupaWZ7XxwaAdNQAFoCEdAoPbejIq9XnV9lChoBkdAbVJSDyvs7mgHTasBaAhHQKD26oLofSx1fZQoaAZHQGjxZ+H8CPpoB03FAWgIR0ChCb6a9bosdX2UKGgGR0ARAOpbUwztaAdLy2gIR0ChDAKLjxTbdX2UKGgGR0BrsfAfuCwsaAdNeQFoCEdAoQxZ7PY4AHV9lChoBkdAbwHBfKISDmgHTUsBaAhHQKEMYfCAMDx1fZQoaAZHQHEGULUkOZtoB008AWgIR0ChDm0uL740dX2UKGgGR0BvNqqXF98aaAdNxwFoCEdAoQ6nva11GXV9lChoBkdAcI4knkT6BWgHTUoBaAhHQKEPguloDgZ1fZQoaAZHQGrFhPCVKPJoB02aAWgIR0ChEA4tpVS5dX2UKGgGR0Bv5Zcu8K5TaAdNXAFoCEdAoRCWEsasIXV9lChoBkdAcZWkq+ajOGgHTR4BaAhHQKEQx50KZ2J1fZQoaAZHQG1ED3ueBhBoB02pAWgIR0ChENwgTyrgdX2UKGgGR0BpNPzUZvUCaAdNdQFoCEdAoREk+s5n13V9lChoBkdAbHCU9pyp72gHTZoBaAhHQKERKN+b3Gp1fZQoaAZHQHGJVlwtJ4BoB03VAWgIR0ChEfVafSQYdX2UKGgGR0BnUvwiJO32aAdNTgFoCEdAoRNuIMz/InV9lChoBkdAbmflf7aZhWgHTWEBaAhHQKEUC4FzMid1fZQoaAZHQDpsTVUdaMdoB0v/aAhHQKEUhnTRYzV1fZQoaAZHQGBJ7NB4UvhoB03oA2gIR0ChFRKPwNLEdX2UKGgGR0BtKLhrFfiQaAdNYwFoCEdAoRW/ukUKzHV9lChoBkdAbnk3wTdtVWgHTTsBaAhHQKEXOBNmDlJ1fZQoaAZHQG8guAAhje9oB01FAWgIR0ChF99S2phndX2UKGgGR0BrIlSGahHtaAdNVAFoCEdAoRfk3qAz6HV9lChoBkdAcFayVv/BFmgHTU4BaAhHQKEYFqVQhwF1fZQoaAZHQG/kHT7VJ+VoB03PAWgIR0ChGGvCdjG2dX2UKGgGR0BoRfMKTjebaAdNfwFoCEdAoRiGF8G9pXV9lChoBkdAakgCHRCx/2gHTWcBaAhHQKEZk13MY/F1fZQoaAZHQHFxHc580DVoB02gA2gIR0ChGl9Pk7wKdX2UKGgGR0BsgdBrvb48aAdNRQFoCEdAoRsu3KB/Z3V9lChoBkdAcBWWhh6SkmgHTXIBaAhHQKEbhIZqEe11fZQoaAZHP8pcLSeAd4poB0vOaAhHQKEchDJEH+t1fZQoaAZHQF+gQGfPHDJoB03oA2gIR0ChHIS/CZWrdX2UKGgGR0BtJxHf/FR6aAdNawFoCEdAoRyPr6ciGHV9lChoBkdAbkrXiiqQzWgHTUUBaAhHQKEc1zyz5XV1fZQoaAZHQG4TEYO2AoZoB02sAWgIR0ChHl8RDkU9dX2UKGgGR0Bu8PgxagVXaAdNdgFoCEdAoR9Nl9SdfHV9lChoBkdAaogYzBRAKWgHTWIBaAhHQKEfgKziS7p1fZQoaAZHQHJlpi3G4qhoB002AWgIR0ChIGVPN3W4dX2UKGgGR7/49GViWmgraAdNnAFoCEdAoSDdPFefI3V9lChoBkdAbfQV45cTrWgHTYgBaAhHQKEhFnVXmvJ1fZQoaAZHQDGlsl9jPOZoB00KAWgIR0ChIWNOuaF3dX2UKGgGR0BjqqziS7oTaAdN6ANoCEdAoSKI065oXnV9lChoBkdAbr/wVCXyAmgHTUYBaAhHQKEin6hQFcJ1fZQoaAZHwEQDQ1JlJ6JoB02iAWgIR0ChJCjHXEqEdX2UKGgGR0BvGcZxaPjoaAdNYgFoCEdAoSUVr9ETg3V9lChoBkdAadsvCdjG1mgHTYwBaAhHQKEmVKujh1l1fZQoaAZHQHBmsuez2OBoB018AWgIR0ChJlxXfZVXdX2UKGgGR0BwRwgcLjPwaAdNkAFoCEdAoSZ9tEXtSnV9lChoBkdAYZiK2rn1WmgHTegDaAhHQKEmowjdHlR1fZQoaAZHQGyxfsu3+ddoB01wAWgIR0ChKJ4wZflZdX2UKGgGR0BsP7FyaNMoaAdNagFoCEdAoSioZTAFgXV9lChoBkdAa4v9qDbrT2gHTWkBaAhHQKEpW40/GER1fZQoaAZHQGnU/JeVs1toB01/AWgIR0ChKmb4BV+7dX2UKGgGR8Awhrjo6jnFaAdL32gIR0ChKwa4tpVTdX2UKGgGR0BsJfgaWHDaaAdNZAFoCEdAoSsXUYsND3V9lChoBkdAcGMTbWVeKWgHTTMBaAhHQKEr4I2wV0t1fZQoaAZHQGqdmK64DtBoB02lAWgIR0ChLGLi2lVMdX2UKGgGR0Buky8zyjHoaAdNxgFoCEdAoS5wCwKSgXV9lChoBkdAZ1wh37k4m2gHTY0BaAhHQKEvG2RaHKx1fZQoaAZHQFb8o4+8oQZoB03oA2gIR0ChLzjk+5e7dX2UKGgGR0Buy0YGdI5HaAdNRQFoCEdAoS+KKpDNQnV9lChoBkdAbf8IqslsxmgHTcoBaAhHQKEwKGnGbTd1fZQoaAZHQGnJQJw84gloB03NAWgIR0ChMFZhBqsVdX2UKGgGR0Bpzo2OyVv/aAdNVAFoCEdAoTCg287IUHV9lChoBkdAbpCfigkC3mgHTY0BaAhHQKEw8MTewcJ1fZQoaAZHQGozhUzbeuVoB01eAWgIR0ChMbZhScbzdX2UKGgGR0BxBreANG3GaAdNRwFoCEdAoTHiLAHminV9lChoBkdAcMwYODrZ8WgHTSUBaAhHQKEyZbeuV5d1fZQoaAZHQGqxjneSB9VoB01mAWgIR0ChMmV1GLDRdX2UKGgGR8BHEVGb1AZ9aAdL+GgIR0ChM5/hESdwdX2UKGgGR0BdXcCHRCyAaAdN6ANoCEdAoTRdPWQOnXV9lChoBkdAbFxCzkZJkGgHTXIBaAhHQKE1kyQgcLl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e351bcfa3b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e351bcfa440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e351bcfa4d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e351bcfa560>", "_build": "<function ActorCriticPolicy._build at 0x7e351bcfa5f0>", "forward": "<function ActorCriticPolicy.forward at 0x7e351bcfa680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e351bcfa710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e351bcfa7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e351bcfa830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e351bcfa8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e351bcfa950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e351bcfa9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e351bca4e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723723017928040431, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPzRr5RvZ09NRzSPOLGP74TNCG8OIdWvQAAAAAAAAAAKrGvPsI30z46PCm+BuSFvvqBcD1N5li9AAAAAAAAAACteS0+dIKOvH0eaju/sKu5oEn5vX7pnboAAIA/AACAP7p4AL6vdW8/+tNbvjb2BL8TqAG+PhimPQAAAAAAAAAARkJDvlS3FT7+RR2845+PvrNYHL2d5OS6AAAAAAAAAABwCoU+wkVOP05msT7BYBm/jVKgPrWnWr0AAAAAAAAAAOvBi75xSze7PSpstJYOj7IdJd085fbXMwAAgD8AAIA/xu1OPjXqPT7+z0W+9AV+vlRA6bzeG9a7AAAAAAAAAAAmpU2+ws9pPsrJeT0XuWq+2fLDuvaPJLwAAAAAAAAAAMDNhb3Zqio/6Kx+vdepyL5wjsC8i3l9PAAAAAAAAAAAjfcuvo9cRLwiDCe7wE1zuedDrD0nGUc6AACAPwAAgD+A+FW9TkyEPxPC9b2dOQy/arYGvWuCpDwAAAAAAAAAAHbAW777V1M/0CVIvopF8b4sH++9VMezPQAAAAAAAAAAbemmvmmMJT2NLpY7IBAgOy4TUL64ZC69AACAPwAAgD8V676+9wKgP40nGb8tJfa+w/+Vvj8iAT0AAAAAAAAAAFp0jb3faqE/qgNTvk+hCb+2kJO9qAgJvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVDwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE3DPjXFtOMAWyUS/6MAXSUR0CimOLOiWVvdX2UKGgGR0Bcshx5s0pFaAdN6ANoCEdAopnkMiKR+3V9lChoBkdAcVX2nsLORmgHS9FoCEdAopsoSrYGuHV9lChoBkdAb+6QU5+6RWgHS+doCEdAopuO7OE/S3V9lChoBkdAcP1Df3vhImgHTQQBaAhHQKKbxZezD4x1fZQoaAZHQGEuY4Qz1sdoB03oA2gIR0Cim9xw6ySndX2UKGgGR0AwVsIVuaWpaAdL3WgIR0CinMEYfnwHdX2UKGgGR0BwRu+UQkHEaAdL1WgIR0CinTzisGPgdX2UKGgGR0BwabE74i5eaAdL4GgIR0CinV1k+X7cdX2UKGgGR0Buuhw++ueSaAdNBQFoCEdAoq+1EAo5P3V9lChoBkdAbmu717IDHWgHS/5oCEdAorCumUGFBnV9lChoBkdAYu41XvH932gHTegDaAhHQKKw3DG96C11fZQoaAZHQG2AXBYV6/toB02KAWgIR0CisaqnWJ7+dX2UKGgGR0BwvCTibUgCaAdNBwFoCEdAorHZjH4oJHV9lChoBkdAYFLVe8f3e2gHTegDaAhHQKKyDQWN3np1fZQoaAZHQHBulJlJ6IFoB0vaaAhHQKKynAfuCwt1fZQoaAZHQHCXcKb8WKxoB0v7aAhHQKKyqm1IAfd1fZQoaAZHQG20BkI5YHRoB0vkaAhHQKKyuXHim2t1fZQoaAZHQGKm7LMcIZ9oB03oA2gIR0Cisy61b7j1dX2UKGgGR0BxKijIq9XcaAdL92gIR0CitEV1fVqfdX2UKGgGR0BxXKdZq20BaAdNEQFoCEdAorRl6LOzIHV9lChoBkdAcrEqoIfKZGgHS+loCEdAorVEi6g/T3V9lChoBkdAbwtWOIZZS2gHS+xoCEdAorWBe9i+c3V9lChoBkdAcab3xWkrPWgHTSQBaAhHQKK1gQAdXDF1fZQoaAZHQGAW86V+qipoB03oA2gIR0Citk/igkC4dX2UKGgGR0Bvo+5BkZrIaAdL7WgIR0CitlUiyIHkdX2UKGgGR0BvHQrMC9ytaAdL7WgIR0CiuJ5a3ZwodX2UKGgGR0Bpvf+GXXyzaAdNFwFoCEdAorjxzNliB3V9lChoBkdAcAq3gDRtxmgHTS8BaAhHQKK5xTa0x/N1fZQoaAZHwCdd9fCyhSNoB0utaAhHQKK6XItlI3B1fZQoaAZHQG/FN2s7uD1oB0v0aAhHQKK65XnyNGV1fZQoaAZHQGKQ+XiR4hVoB03oA2gIR0Ciuu8YZVGTdX2UKGgGR0BPnbLU1AJLaAdL0GgIR0CivKDxTbWVdX2UKGgGR0BxcYsSTQmeaAdL+mgIR0CivfQsXizcdX2UKGgGR0BoHbUiILw4aAdNRgFoCEdAor6gPAfuC3V9lChoBkdAcaGAXEZR9GgHTYUBaAhHQKK+6lruYyB1fZQoaAZHQHASnVwxWT5oB0v2aAhHQKK/0W+GoJl1fZQoaAZHQG94M2vStvJoB0vmaAhHQKLBMmG/N7l1fZQoaAZHQGwE9mpVCHBoB00VAWgIR0CiwfiS7oStdX2UKGgGR0BDJw66reZYaAdLqmgIR0Ciwi6x5cC6dX2UKGgGR0BwxnaufVZtaAdL62gIR0CiwtJT2nKodX2UKGgGR0BzDYID5j6OaAdNTAFoCEdAosL6c0+C9XV9lChoBkdAbznmTTvy9WgHS+1oCEdAosSlc+qzaHV9lChoBkdAcb4xBE8aGmgHS+ZoCEdAosTGrwOOKnV9lChoBkdAYY2Vs1sLv2gHTegDaAhHQKLGY+C9RJp1fZQoaAZHQHCsbYf4h2ZoB00QAWgIR0CixuOg6EJ0dX2UKGgGR0BCC9ZA6dUbaAdLw2gIR0Cix/undfsvdX2UKGgGR0Bh8+mR/3FlaAdN6ANoCEdAoshFFDv3J3V9lChoBkdAblip++dsi2gHS9toCEdAosjNIXj2jHV9lChoBkdAcQMVLBbfQGgHTSwBaAhHQKLJIFyq+8J1fZQoaAZHQHEOiQPqcExoB00IAWgIR0CiySz4+KTCdX2UKGgGR0Bt2dAmiQDFaAdL32gIR0CiynmJ3xFzdX2UKGgGR0BvqlDSgGr0aAdL+2gIR0Ciy1Bf0EowdX2UKGgGR0Bg+sG5c1O1aAdN6ANoCEdAostcxfv4NHV9lChoBkdAVKBDD0lJH2gHTegDaAhHQKLLmDZDiOx1fZQoaAZHQGHBHgHeJpFoB03oA2gIR0CizF7fHggpdX2UKGgGR0BxLSW0JF9baAdL+mgIR0CizKisfaHsdX2UKGgGR0BuVT0cwQDnaAdL7mgIR0CizMxsuWa+dX2UKGgGR0BwrSvzOHFhaAdL2mgIR0CizTn+ZPVNdX2UKGgGR0BwvE8wHqu9aAdLzmgIR0Cize5wwTM8dX2UKGgGR0BjbtqDbrTqaAdN6ANoCEdAos+fGn4wiHV9lChoBkdAZy/hWo3rEGgHTRIBaAhHQKLRztbcGkh1fZQoaAZHQD3rEaVD8cdoB0uvaAhHQKLShSYw7DF1fZQoaAZHQHCVnhn8KohoB00fAWgIR0Ci0qxx1gYxdX2UKGgGR0BxOnO0LMLXaAdL+2gIR0Ci0q+E7GNrdX2UKGgGR0Bw474/NZ/1aAdL/WgIR0Ci0zmcWj46dX2UKGgGR0BhGK7kGRmsaAdN6ANoCEdAotN07W/ag3V9lChoBkdAcgTgHNX5nGgHTWwBaAhHQKLTx7m+0w91fZQoaAZHQHJ+U/8l5W1oB00PAWgIR0Ci0/iLuQZGdX2UKGgGR0BuRXIMjNY9aAdNVQFoCEdAotQPIKc/dXV9lChoBkdAcK4MSbpeNWgHTRgBaAhHQKLUq/0NBnl1fZQoaAZHQGKqySmqHXVoB03oA2gIR0Ci1QBZZB9kdX2UKGgGR0BvMPRu0kWzaAdL5GgIR0Ci1e98JD3NdX2UKGgGR0A8OzIFNcnmaAdLpGgIR0Ci1uStV7x/dX2UKGgGR0BwOixQizLPaAdNYwJoCEdAotfHRNRFZ3V9lChoBkdAbZCUOd5IH2gHS/5oCEdAoti8YQ8OkXV9lChoBkdAPFYmkWRA8mgHS9loCEdAotlSesgdO3V9lChoBkdAcTvCcwxnF2gHS+JoCEdAotlzTBqKxnV9lChoBkdAbjsWEbo8p2gHS/xoCEdAotl+wTufEnV9lChoBkdAcb5IGhVU/GgHS/ZoCEdAotmDImw7knV9lChoBkdAcEdwC8vmHWgHS/toCEdAotnLwlSjxnV9lChoBkdAcWhvqC6H02gHTc8CaAhHQKLadeFcpsp1fZQoaAZHQHFKL/S6UaBoB01OAWgIR0Ci2rwYUFjedX2UKGgGR0Bw00R/ViF1aAdL22gIR0Ci2te1jRUndX2UKGgGR0BiGFnEl3QlaAdN6ANoCEdAotrmHi3ocXV9lChoBkdAcl3fZElVtGgHTRkBaAhHQKLbNFhG6PN1fZQoaAZHQHAVxHww0wdoB00vAWgIR0Ci21Xg9/z8dX2UKGgGR0Buzbs2NvOyaAdL+GgIR0Ci3G65PM0QdX2UKGgGR0BuhM/t6X0HaAdL7mgIR0Ci3PgHVwxWdX2UKGgGR0BxFxWKdhAoaAdL5WgIR0Ci3VKYAsCldX2UKGgGR0Bw0ZrdnCfpaAdL6GgIR0Ci3YCExqO+dX2UKGgGR0Bx7tdNWU8naAdL9WgIR0Ci3cxhUipvdX2UKGgGR0Bvc8NKAavSaAdNAAFoCEdAot38VafSQnV9lChoBkdAaTz84PwuumgHTQABaAhHQKLe/EBsANp1fZQoaAZHQHDhQLiMo+hoB0v7aAhHQKLfVNdJJ5F1fZQoaAZHQHDEPukUKzBoB0vnaAhHQKLfZSP2f051fZQoaAZHQGwzw7T2FnJoB00LAWgIR0Ci343tBv74dX2UKGgGR0BtUgiqyWzGaAdNBgFoCEdAot+ic0+C9XV9lChoBkdAbz/d0JWvKWgHS+1oCEdAot+uiJwbVHV9lChoBkdAYD1uhK15SmgHTegDaAhHQKLfxI5HVgB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:071b754538ae2d7885c5a383462a42b94570b1d8d7411a31530de732072217f7
|
3 |
+
size 147504
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
@@ -80,7 +80,7 @@
|
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7e351bcfa3b0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e351bcfa440>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e351bcfa4d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e351bcfa560>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7e351bcfa5f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7e351bcfa680>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7e351bcfa710>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e351bcfa7a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7e351bcfa830>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e351bcfa8c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e351bcfa950>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7e351bcfa9e0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e351bca4e00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1723723017928040431,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPzRr5RvZ09NRzSPOLGP74TNCG8OIdWvQAAAAAAAAAAKrGvPsI30z46PCm+BuSFvvqBcD1N5li9AAAAAAAAAACteS0+dIKOvH0eaju/sKu5oEn5vX7pnboAAIA/AACAP7p4AL6vdW8/+tNbvjb2BL8TqAG+PhimPQAAAAAAAAAARkJDvlS3FT7+RR2845+PvrNYHL2d5OS6AAAAAAAAAABwCoU+wkVOP05msT7BYBm/jVKgPrWnWr0AAAAAAAAAAOvBi75xSze7PSpstJYOj7IdJd085fbXMwAAgD8AAIA/xu1OPjXqPT7+z0W+9AV+vlRA6bzeG9a7AAAAAAAAAAAmpU2+ws9pPsrJeT0XuWq+2fLDuvaPJLwAAAAAAAAAAMDNhb3Zqio/6Kx+vdepyL5wjsC8i3l9PAAAAAAAAAAAjfcuvo9cRLwiDCe7wE1zuedDrD0nGUc6AACAPwAAgD+A+FW9TkyEPxPC9b2dOQy/arYGvWuCpDwAAAAAAAAAAHbAW777V1M/0CVIvopF8b4sH++9VMezPQAAAAAAAAAAbemmvmmMJT2NLpY7IBAgOy4TUL64ZC69AACAPwAAgD8V676+9wKgP40nGb8tJfa+w/+Vvj8iAT0AAAAAAAAAAFp0jb3faqE/qgNTvk+hCb+2kJO9qAgJvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVDwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE3DPjXFtOMAWyUS/6MAXSUR0CimOLOiWVvdX2UKGgGR0Bcshx5s0pFaAdN6ANoCEdAopnkMiKR+3V9lChoBkdAcVX2nsLORmgHS9FoCEdAopsoSrYGuHV9lChoBkdAb+6QU5+6RWgHS+doCEdAopuO7OE/S3V9lChoBkdAcP1Df3vhImgHTQQBaAhHQKKbxZezD4x1fZQoaAZHQGEuY4Qz1sdoB03oA2gIR0Cim9xw6ySndX2UKGgGR0AwVsIVuaWpaAdL3WgIR0CinMEYfnwHdX2UKGgGR0BwRu+UQkHEaAdL1WgIR0CinTzisGPgdX2UKGgGR0BwabE74i5eaAdL4GgIR0CinV1k+X7cdX2UKGgGR0Buuhw++ueSaAdNBQFoCEdAoq+1EAo5P3V9lChoBkdAbmu717IDHWgHS/5oCEdAorCumUGFBnV9lChoBkdAYu41XvH932gHTegDaAhHQKKw3DG96C11fZQoaAZHQG2AXBYV6/toB02KAWgIR0CisaqnWJ7+dX2UKGgGR0BwvCTibUgCaAdNBwFoCEdAorHZjH4oJHV9lChoBkdAYFLVe8f3e2gHTegDaAhHQKKyDQWN3np1fZQoaAZHQHBulJlJ6IFoB0vaaAhHQKKynAfuCwt1fZQoaAZHQHCXcKb8WKxoB0v7aAhHQKKyqm1IAfd1fZQoaAZHQG20BkI5YHRoB0vkaAhHQKKyuXHim2t1fZQoaAZHQGKm7LMcIZ9oB03oA2gIR0Cisy61b7j1dX2UKGgGR0BxKijIq9XcaAdL92gIR0CitEV1fVqfdX2UKGgGR0BxXKdZq20BaAdNEQFoCEdAorRl6LOzIHV9lChoBkdAcrEqoIfKZGgHS+loCEdAorVEi6g/T3V9lChoBkdAbwtWOIZZS2gHS+xoCEdAorWBe9i+c3V9lChoBkdAcab3xWkrPWgHTSQBaAhHQKK1gQAdXDF1fZQoaAZHQGAW86V+qipoB03oA2gIR0Citk/igkC4dX2UKGgGR0Bvo+5BkZrIaAdL7WgIR0CitlUiyIHkdX2UKGgGR0BvHQrMC9ytaAdL7WgIR0CiuJ5a3ZwodX2UKGgGR0Bpvf+GXXyzaAdNFwFoCEdAorjxzNliB3V9lChoBkdAcAq3gDRtxmgHTS8BaAhHQKK5xTa0x/N1fZQoaAZHwCdd9fCyhSNoB0utaAhHQKK6XItlI3B1fZQoaAZHQG/FN2s7uD1oB0v0aAhHQKK65XnyNGV1fZQoaAZHQGKQ+XiR4hVoB03oA2gIR0Ciuu8YZVGTdX2UKGgGR0BPnbLU1AJLaAdL0GgIR0CivKDxTbWVdX2UKGgGR0BxcYsSTQmeaAdL+mgIR0CivfQsXizcdX2UKGgGR0BoHbUiILw4aAdNRgFoCEdAor6gPAfuC3V9lChoBkdAcaGAXEZR9GgHTYUBaAhHQKK+6lruYyB1fZQoaAZHQHASnVwxWT5oB0v2aAhHQKK/0W+GoJl1fZQoaAZHQG94M2vStvJoB0vmaAhHQKLBMmG/N7l1fZQoaAZHQGwE9mpVCHBoB00VAWgIR0CiwfiS7oStdX2UKGgGR0BDJw66reZYaAdLqmgIR0Ciwi6x5cC6dX2UKGgGR0BwxnaufVZtaAdL62gIR0CiwtJT2nKodX2UKGgGR0BzDYID5j6OaAdNTAFoCEdAosL6c0+C9XV9lChoBkdAbznmTTvy9WgHS+1oCEdAosSlc+qzaHV9lChoBkdAcb4xBE8aGmgHS+ZoCEdAosTGrwOOKnV9lChoBkdAYY2Vs1sLv2gHTegDaAhHQKLGY+C9RJp1fZQoaAZHQHCsbYf4h2ZoB00QAWgIR0CixuOg6EJ0dX2UKGgGR0BCC9ZA6dUbaAdLw2gIR0Cix/undfsvdX2UKGgGR0Bh8+mR/3FlaAdN6ANoCEdAoshFFDv3J3V9lChoBkdAblip++dsi2gHS9toCEdAosjNIXj2jHV9lChoBkdAcQMVLBbfQGgHTSwBaAhHQKLJIFyq+8J1fZQoaAZHQHEOiQPqcExoB00IAWgIR0CiySz4+KTCdX2UKGgGR0Bt2dAmiQDFaAdL32gIR0CiynmJ3xFzdX2UKGgGR0BvqlDSgGr0aAdL+2gIR0Ciy1Bf0EowdX2UKGgGR0Bg+sG5c1O1aAdN6ANoCEdAostcxfv4NHV9lChoBkdAVKBDD0lJH2gHTegDaAhHQKLLmDZDiOx1fZQoaAZHQGHBHgHeJpFoB03oA2gIR0CizF7fHggpdX2UKGgGR0BxLSW0JF9baAdL+mgIR0CizKisfaHsdX2UKGgGR0BuVT0cwQDnaAdL7mgIR0CizMxsuWa+dX2UKGgGR0BwrSvzOHFhaAdL2mgIR0CizTn+ZPVNdX2UKGgGR0BwvE8wHqu9aAdLzmgIR0Cize5wwTM8dX2UKGgGR0BjbtqDbrTqaAdN6ANoCEdAos+fGn4wiHV9lChoBkdAZy/hWo3rEGgHTRIBaAhHQKLRztbcGkh1fZQoaAZHQD3rEaVD8cdoB0uvaAhHQKLShSYw7DF1fZQoaAZHQHCVnhn8KohoB00fAWgIR0Ci0qxx1gYxdX2UKGgGR0BxOnO0LMLXaAdL+2gIR0Ci0q+E7GNrdX2UKGgGR0Bw474/NZ/1aAdL/WgIR0Ci0zmcWj46dX2UKGgGR0BhGK7kGRmsaAdN6ANoCEdAotN07W/ag3V9lChoBkdAcgTgHNX5nGgHTWwBaAhHQKLTx7m+0w91fZQoaAZHQHJ+U/8l5W1oB00PAWgIR0Ci0/iLuQZGdX2UKGgGR0BuRXIMjNY9aAdNVQFoCEdAotQPIKc/dXV9lChoBkdAcK4MSbpeNWgHTRgBaAhHQKLUq/0NBnl1fZQoaAZHQGKqySmqHXVoB03oA2gIR0Ci1QBZZB9kdX2UKGgGR0BvMPRu0kWzaAdL5GgIR0Ci1e98JD3NdX2UKGgGR0A8OzIFNcnmaAdLpGgIR0Ci1uStV7x/dX2UKGgGR0BwOixQizLPaAdNYwJoCEdAotfHRNRFZ3V9lChoBkdAbZCUOd5IH2gHS/5oCEdAoti8YQ8OkXV9lChoBkdAPFYmkWRA8mgHS9loCEdAotlSesgdO3V9lChoBkdAcTvCcwxnF2gHS+JoCEdAotlzTBqKxnV9lChoBkdAbjsWEbo8p2gHS/xoCEdAotl+wTufEnV9lChoBkdAcb5IGhVU/GgHS/ZoCEdAotmDImw7knV9lChoBkdAcEdwC8vmHWgHS/toCEdAotnLwlSjxnV9lChoBkdAcWhvqC6H02gHTc8CaAhHQKLadeFcpsp1fZQoaAZHQHFKL/S6UaBoB01OAWgIR0Ci2rwYUFjedX2UKGgGR0Bw00R/ViF1aAdL22gIR0Ci2te1jRUndX2UKGgGR0BiGFnEl3QlaAdN6ANoCEdAotrmHi3ocXV9lChoBkdAcl3fZElVtGgHTRkBaAhHQKLbNFhG6PN1fZQoaAZHQHAVxHww0wdoB00vAWgIR0Ci21Xg9/z8dX2UKGgGR0Buzbs2NvOyaAdL+GgIR0Ci3G65PM0QdX2UKGgGR0BuhM/t6X0HaAdL7mgIR0Ci3PgHVwxWdX2UKGgGR0BxFxWKdhAoaAdL5WgIR0Ci3VKYAsCldX2UKGgGR0Bw0ZrdnCfpaAdL6GgIR0Ci3YCExqO+dX2UKGgGR0Bx7tdNWU8naAdL9WgIR0Ci3cxhUipvdX2UKGgGR0Bvc8NKAavSaAdNAAFoCEdAot38VafSQnV9lChoBkdAaTz84PwuumgHTQABaAhHQKLe/EBsANp1fZQoaAZHQHDhQLiMo+hoB0v7aAhHQKLfVNdJJ5F1fZQoaAZHQHDEPukUKzBoB0vnaAhHQKLfZSP2f051fZQoaAZHQGwzw7T2FnJoB00LAWgIR0Ci343tBv74dX2UKGgGR0BtUgiqyWzGaAdNBgFoCEdAot+ic0+C9XV9lChoBkdAbz/d0JWvKWgHS+1oCEdAot+uiJwbVHV9lChoBkdAYD1uhK15SmgHTegDaAhHQKLfxI5HVgB1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8092936a107c551d1baa05c5c929751f02ba93ef03a85d129f534adb8f8960a
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10d3e7d0015bf9d669aecb210c497347c650b556eb26ae64a99417d77246d0bc
|
3 |
+
size 43634
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.3.1+cu121
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.3.1+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 216.66643979999998, "std_reward": 74.32913067212647, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-08-15T12:37:50.527385"}
|