File size: 13,782 Bytes
2205d54
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d76d0551cf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d76d0551d80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d76d0551e10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d76d0551ea0>", "_build": "<function ActorCriticPolicy._build at 0x7d76d0551f30>", "forward": "<function ActorCriticPolicy.forward at 0x7d76d0551fc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d76d0552050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d76d05520e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d76d0552170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d76d0552200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d76d0552290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d76d0552320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d76d04f4c00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1723751498200673559, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOiOr0M/JU+xPgLPpwliL5tRhG8lbCZvQAAAAAAAAAAetJZvjTBPj81ni8+guFUvo93ezxMnyI+AAAAAAAAAACgKhQ+/jSXP9tFZD4L35q++417PmZXZLoAAAAAAAAAAI0v8T06FW0/ZiCoPO7Tjb7CQ689/vZPPQAAAAAAAAAA89tDPqpXXT5r4HO92X0/vvmXqrymW5U9AAAAAAAAAAAAIJS7uLChu1ZaYLzvOpI8IQwAPXqQeL0AAIA/AACAPxNpn753xCA/Ilt9PsFHUL4ZWpG9HWRlPQAAAAAAAAAAM+u9vQSqoT8OQWO+jXSdvpF4/r1g27u9AAAAAAAAAAAACbE9HwWYub2W7jqHjxK3qgoPO3Y307kAAAAAAACAPzOLcbyPvnu6St8uM+P/My/S2pY6LqjTswAAgD8AAIA/5u1DPcOJb7oy1as41+rDM81YGDpyqMi3AACAPwAAgD/Nbd08VB2MvH5DPbshE1o9M0cFvbLlgzwAAIA/AACAPzOj8D1A0iQ/zkw9vfRGlb4Tl9q7C383ugAAAAAAAAAA81fbPVwLYbqgSSC3CdlPskzaQTs1hTk2AACAPwAAgD8NEKw9SDWIukGTLjhmIYyxgu8cuyiCR7cAAIA/AACAPwCrND1SwNq5A+M0uI5WyLMjhWI7NehUNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGULdTYNAkeMAWyUTegDjAF0lEdAlgH7ONYKY3V9lChoBkdAcK52bXpW3mgHTZ0BaAhHQJYCG3mV7hN1fZQoaAZHQG/0XirDIiloB01vAmgIR0CWAtOARTS9dX2UKGgGR0BkkQF9roGIaAdN6ANoCEdAlhNBsImgJ3V9lChoBkdALyISUTtb92gHTQcBaAhHQJYT0LDye7N1fZQoaAZHQEAhy+6Ae7toB00ZAWgIR0CWE/YCyQgcdX2UKGgGR0BuYDgAIY3vaAdNHAJoCEdAlhh+JP69CnV9lChoBkdAa7uuSOinHmgHTfYBaAhHQJYZc0HhS+B1fZQoaAZHQHIFViWmgrZoB01oAmgIR0CWIaVTrE9/dX2UKGgGR0BCyfGMn7YTaAdL1GgIR0CWIhhEBsAOdX2UKGgGR0BcJFl05lvqaAdN6ANoCEdAlibsrEtNBXV9lChoBkdAcOLBuGbkO2gHTd4DaAhHQJYtRHJ9y951fZQoaAZHQHBIxcAzYVZoB01vAmgIR0CWL6c+aBqcdX2UKGgGR0BxEeIUJv5yaAdNSAFoCEdAli+2ce8wpXV9lChoBkdAZKemLtNSImgHTegDaAhHQJZLzLbHp8p1fZQoaAZHQGb45LytmthoB03oA2gIR0CWTAvoNd7fdX2UKGgGR0BwACVpsXSCaAdNpAFoCEdAlk6ElzEJjXV9lChoBkdAZiZgBtDUmWgHTegDaAhHQJZQ5UvPC2t1fZQoaAZHQGVG+Ad4mkZoB03oA2gIR0CWUf5MlC1JdX2UKGgGR0BwnGm/FirlaAdNNwJoCEdAllIb0rbxmXV9lChoBkdAYGsxEfDDTGgHTegDaAhHQJZZn8dgfEJ1fZQoaAZHQGUBptSAH3VoB03oA2gIR0CWX6llbu+idX2UKGgGR0BlShuEVWS2aAdN6ANoCEdAlmDUD+zdDnV9lChoBkdAb9Ajt5UtI2gHTeQBaAhHQJZnZWuHN5d1fZQoaAZHQG0aeaBqbjNoB03EAmgIR0CWacNXo1UEdX2UKGgGR0Bh+lSn+AEuaAdN6ANoCEdAlm/SBwuM/HV9lChoBkdAchxWuHN5dGgHTbYCaAhHQJZ38JTl1bJ1fZQoaAZHQHFH+uaF23doB01qAWgIR0CWe7T7VJ+VdX2UKGgGR0ByIdSUC7sfaAdNlwJoCEdAln630TURWnV9lChoBkdAZmOyhzvJBGgHTegDaAhHQJaB2Ymb9ZR1fZQoaAZHQHFhF7Y02tNoB03aAWgIR0CWhRr9VFQVdX2UKGgGR0Bm8ATTOPeYaAdN6ANoCEdAloZWnTAnD3V9lChoBkdAbczyDqW1MWgHTaoBaAhHQJaKHKdQO4J1fZQoaAZHQF8mnGsFMZhoB03oA2gIR0CWi4wI+nqFdX2UKGgGR0BEpyuZCv5haAdL9WgIR0CWjEQdjoZAdX2UKGgGR0BiBhg5R0lraAdN6ANoCEdAlpEWYSg5BHV9lChoBkdAYkOn+hoM8mgHTegDaAhHQJaRRWOp84R1fZQoaAZHQGHTUNSZSeloB03oA2gIR0CWprg5BC2MdX2UKGgGR0BwwYpy6tknaAdN0gFoCEdAlqgaOxSpBHV9lChoBkdAXOVdkauOj2gHTegDaAhHQJaoHGkvboN1fZQoaAZHQGjtBdld1MdoB03oA2gIR0CWqEblijL0dX2UKGgGR0BwdHByjpLVaAdNwQJoCEdAlqoRS1mapnV9lChoBkdANpkG3WnTAmgHS/9oCEdAlqxXB55Z83V9lChoBkdAYBrsCT2WZGgHTegDaAhHQJaxGJZW7vp1fZQoaAZHQG0/Tyz5XU9oB016AWgIR0CWtmP2wmmcdX2UKGgGR0BwlROgxrSFaAdNDwNoCEdAlrgbiIcin3V9lChoBkdAcD8mYSg5BGgHTR8CaAhHQJa5Mc94eLh1fZQoaAZHQEFX2g3974VoB00LAWgIR0CWum5OafBfdX2UKGgGR0BweKLdepn6aAdNSAFoCEdAlr3nB1s+FHV9lChoBkdAb67oZhrnDGgHTTgCaAhHQJa/P1RLsa91fZQoaAZHQHFkfmxMWXVoB03iAmgIR0CWwcLzPKMedX2UKGgGR0Bwyn0HyEteaAdNCAJoCEdAlsPxCx/us3V9lChoBkdAbyTV1fVqe2gHTSICaAhHQJbQFAeJYT11fZQoaAZHQGJewDFId2hoB03oA2gIR0CW0Be1rqMWdX2UKGgGR0BxN3D/EOy3aAdNVgFoCEdAltA4L9deIHV9lChoBkdAbwJw71ZkkWgHTbIBaAhHQJbRrjABT4t1fZQoaAZHQHAuHztkWh1oB00KAmgIR0CW0s+zMRpUdX2UKGgGR0Bvl7BXS0BwaAdNhAJoCEdAltQQvg3tKXV9lChoBkdAZVNapxWDH2gHTegDaAhHQJbW/EfkmyB1fZQoaAZHQGzSn3lCCz1oB00SAmgIR0CW2QL8rI5pdX2UKGgGR0BD9q4QSSNgaAdNAwFoCEdAluASfYjB23V9lChoBkdAbpyAYHgP3GgHTXcCaAhHQJbg4T101ZV1fZQoaAZHQGPglIVdonNoB03oA2gIR0CW40/7iyY5dX2UKGgGR0BmuC6tknTiaAdN6ANoCEdAlvyho7FKkHV9lChoBkdAZeIXPZ7HAGgHTegDaAhHQJb9zEFW4mV1fZQoaAZHQHCsp9Vmz0JoB010AWgIR0CW/h9qUNaydX2UKGgGR0BwGEUXYUWVaAdNoQFoCEdAlwIiaEzwdHV9lChoBkdAck0DgqEvkGgHTesCaAhHQJcCnFNtZV51fZQoaAZHQE8zRtxdY4hoB0vSaAhHQJcCzKHO8kF1fZQoaAZHQDGpBsyi22JoB0vVaAhHQJcDiRGMGX51fZQoaAZHQG3gZvcafjFoB03kAmgIR0CXCExz7uUmdX2UKGgGR0BuukcABDG+aAdN9AFoCEdAlwhsgZCOWHV9lChoBkdAcFd1lGwzL2gHTaUBaAhHQJcIznzQNTd1fZQoaAZHQHEYTsUqQRxoB03OAWgIR0CXCRl2vB8AdX2UKGgGR0BB3N5UtI07aAdLzWgIR0CXCTn/kvK2dX2UKGgGR0BvYigsbvPUaAdNjQJoCEdAlwyz5ftx/HV9lChoBkdAbWgLIgeRxWgHTXIBaAhHQJcNdgy/KyR1fZQoaAZHQG8QMqSX+l1oB02qAmgIR0CXDjQhwEQodX2UKGgGR0Bjs9g0CRwIaAdN6ANoCEdAlxDlawD/2nV9lChoBkdAY1dE9dNWVGgHTegDaAhHQJcTMhStNi91fZQoaAZHQDoXrUsnRb9oB0vnaAhHQJcUIz3yqdZ1fZQoaAZHQG3TPZh8YyhoB02uAWgIR0CXFW77bcoIdX2UKGgGR0BxYPHGS6lMaAdNWQFoCEdAlxXoREnb7HV9lChoBkdATkyakRBeHGgHS7FoCEdAlxhbR0EHMXV9lChoBkdAcCMBnzxwymgHTY8BaAhHQJcYqwfQrtp1fZQoaAZHQG7tygPEsJ9oB004AWgIR0CXGSnRsuWbdX2UKGgGR0Bv4gy0rsjWaAdN5gFoCEdAlxnKKUFB6nV9lChoBkdAcXDpe/pMYmgHTV4BaAhHQJcbupo9LYh1fZQoaAZHQHDC9dRiw0RoB02cAWgIR0CXIN0ZWJaadX2UKGgGR0Bt8PMfRu0kaAdNdwFoCEdAlyNpDeCTU3V9lChoBkdAcL+AmReTmmgHTXwBaAhHQJck5+OOsDJ1fZQoaAZHQFBzsrupjtpoB0vmaAhHQJcnSagElmh1fZQoaAZHQHKi7Egntv5oB01WAWgIR0CXK50uDjBEdX2UKGgGR0BtNamIj4YaaAdNcgJoCEdAly4p39rGi3V9lChoBkdAcQ/KsMiKSGgHTUsBaAhHQJcuSYv38Gd1fZQoaAZHQHHIG/nGKhtoB01DAWgIR0CXLlmKIi1RdX2UKGgGR0BwJrLzPKMeaAdNtwFoCEdAlzBOV5a/y3V9lChoBkdAcSdw/xDst2gHTcEBaAhHQJcyTPnjhk11fZQoaAZHQG4padMCcPRoB003AmgIR0CXNBUxmCiAdX2UKGgGR0BwSWhpQDV6aAdNEAJoCEdAlzQ/CEYfn3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.1+cu121", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}