rishavranaut's picture
End of training
ebf46e7 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/flan-t5-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: flanT5_large_Task2_semantic_pred
    results: []

flanT5_large_Task2_semantic_pred

This model is a fine-tuned version of google/flan-t5-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9725
  • Accuracy: 0.7979
  • Precision: 0.8195
  • Recall: 0.7566
  • F1 score: 0.7868

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 score
1.3836 0.4074 2500 1.7839 0.5072 0.0 0.0 0.0
1.3837 0.8147 5000 0.7528 0.5072 0.0 0.0 0.0
1.2525 1.2221 7500 0.7166 0.4928 0.4928 1.0 0.6603
1.2899 1.6295 10000 1.5233 0.6310 0.5765 0.9471 0.7167
1.4214 2.0368 12500 1.2841 0.6571 0.6021 0.8968 0.7205
1.4003 2.4442 15000 1.1805 0.6115 0.5615 0.9656 0.7101
1.3396 2.8516 17500 0.9273 0.6206 0.5683 0.9577 0.7133
1.3938 3.2589 20000 1.5375 0.6858 0.7322 0.5714 0.6419
1.4272 3.6663 22500 1.2804 0.7158 0.7548 0.6270 0.6850
1.2643 4.0737 25000 1.2878 0.7262 0.7692 0.6349 0.6957
1.3015 4.4810 27500 1.1752 0.7158 0.7532 0.6296 0.6859
1.3525 4.8884 30000 1.1726 0.7249 0.6946 0.7884 0.7385
1.2839 5.2957 32500 1.0721 0.7223 0.7586 0.6402 0.6944
1.2047 5.7031 35000 1.3045 0.7223 0.7089 0.7407 0.7245
1.226 6.1105 37500 1.1262 0.7366 0.7486 0.7011 0.7240
1.1001 6.5178 40000 1.2328 0.7445 0.7407 0.7407 0.7407
1.1083 6.9252 42500 1.1119 0.7353 0.7030 0.8016 0.7491
1.0281 7.3326 45000 1.1205 0.7471 0.7434 0.7434 0.7434
1.0396 7.7399 47500 1.1243 0.7640 0.7958 0.7011 0.7454
0.9913 8.1473 50000 0.9882 0.7823 0.8187 0.7169 0.7645
0.9364 8.5547 52500 1.1489 0.7705 0.7488 0.8042 0.7755
1.0081 8.9620 55000 0.9507 0.7810 0.7807 0.7725 0.7766
0.9026 9.3694 57500 1.0181 0.7888 0.7888 0.7804 0.7846
0.8961 9.7768 60000 0.9725 0.7979 0.8195 0.7566 0.7868

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1