language: en | |
license: mit | |
# Model Card | |
Bank ACTION Classifier - DistilBERT | |
Developed by: Richard Chai, https://www.linkedin.com/in/richardchai/ | |
This model has been fine-tuned for Bank User Action/Intent Identification. | |
Currently, it identifies the following actions: | |
['access', | |
'activate', | |
'apply', | |
'block', | |
'cancel', | |
'close', | |
'deposit', | |
'dispute', | |
'earn', | |
'exchange', | |
'find', | |
'inquire', | |
'link', | |
'open', | |
'pay', | |
'receive', | |
'redeem', | |
'refund', | |
'renew', | |
'report', | |
'reset', | |
'retrieve', | |
'schedule', | |
'select', | |
'transfer', | |
'unblock', | |
'unknown', | |
'unlink', | |
'update', | |
'verify', | |
'withdraw'] | |
## Model Details | |
- **Model type**: Transformer-based (e.g., BERT, DistilBERT, etc.): DistilBERT | |
- **Dataset**: Stanford Sentiment Treebank SST-5 or another sentiment dataset | |
- **Fine-tuning**: The model was fine-tuned for X epochs using a learning rate of Y on a dataset with Z samples. | |
## Usage | |
You can use this model to classify text sentiment as follows: | |
```python | |
from transformers import pipeline | |
# Check if GPU is available | |
device = 0 if torch.cuda.is_available() else -1 | |
model_checkpt = "richardchai/plp_action_clr_distilbert" | |
clf = pipeline('text-classification', model="model_trained/distilbert", device=device) | |
result = clf(f"['please tell me more about your fixed deposit.', 'I want to deposit money into my savings account.']") | |
print(result) | |
``` | |