function_caller / README.md
Aurelien-Morgan-Bot's picture
v0.48 - 2025-03-23 10:45:39 UTC - retrain-pipelines v0.1.1 - Upload model and tokenizer with README.
af987fe verified
metadata
version: '0.48'
timestamp: 20250323_104539189_UTC
model_name: retrain-pipelines Function Caller
base_model: unsloth/Qwen2.5-1.5B
base_model_relation: adapter
library_name: transformers
datasets:
  - retrain-pipelines/func_calls
license: apache-2.0
language:
  - en
task_categories:
  - text2text-generation
tags:
  - retrain-pipelines
  - function-calling
  - LLM Agent
  - code
  - unsloth
thumbnail: >-
  https://cdn-avatars.huggingface.co/v1/production/uploads/651e93137b2a2e027f9e55df/96hzBved0YMjCq--s0kad.png
pipeline_tag: text2text-generation
widget:
  - text: Hello
    example_title: No function call
    output:
      text: '[]'
  - text: Is 49 a perfect square?
    example_title: Perfect square
    output:
      text: '[{"name": "is_perfect_square", "arguments": {"num": 49}}]'
mf_run_id: '1806'
model-index:
  - name: retrain-pipelines Function Caller
    results:
      - task:
          type: text2text-generation
          name: Text2Text Generation
        dataset:
          name: retrain-pipelines Function Calling
          type: retrain-pipelines/func_calls
          split: validation
          revision: 1dea61235fb9e8b7cb1ed3762df51dfb0ae91667
        metrics:
          - type: precision
            value: 0.0625
          - type: recall
            value: 0.0625
          - type: f1
            value: 0.0625
          - type: jaccard
            value: 0.0625
retrain-pipelines Function Caller
version 0.48 - 2025-03-23 10:45:39 UTC (retraining source-code | pipeline-card)

Training dataset :

  • retrain-pipelines/func_calls v0.5 (1dea612 - 2025-03-23 10:30:06 UTC)
     

Base model :

The herein LoRa adapter can for instance be used as follows :

from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import device, cuda

repo_id = "retrain-pipelines/function_caller"
revision = "<model_revision_commit_hash>"
model = AutoModelForCausalLM.from_pretrained(
    repo_id, revision=revision, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(
    repo_id, revision=revision, torch_dtype="auto", device_map="auto")

device = device("cuda" if cuda.is_available() else "cpu")
def generate_tool_calls_list(query, max_new_tokens=400) -> str:
    formatted_query = tokenizer.chat_template.format(query, "")
    inputs = tokenizer(formatted_query, return_tensors="pt").input_ids.to(device)
    outputs = model.generate(inputs, max_new_tokens=max_new_tokens, do_sample=False)
    generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
    return generated_text[len(formatted_query):].strip()

generate_tool_calls_list("Is 49 a perfect square ?")


Powered by retrain-pipelines 0.1.1 - Run by Aurelien-Morgan-Bot - UnslothFuncCallFlow - mf_run_id : 1806