
v0.48 - 2025-03-23 10:45:39 UTC - retrain-pipelines v0.1.1 - Upload model and tokenizer with README.
af987fe
verified
metadata
version: '0.48'
timestamp: 20250323_104539189_UTC
model_name: retrain-pipelines Function Caller
base_model: unsloth/Qwen2.5-1.5B
base_model_relation: adapter
library_name: transformers
datasets:
- retrain-pipelines/func_calls
license: apache-2.0
language:
- en
task_categories:
- text2text-generation
tags:
- retrain-pipelines
- function-calling
- LLM Agent
- code
- unsloth
thumbnail: >-
https://cdn-avatars.huggingface.co/v1/production/uploads/651e93137b2a2e027f9e55df/96hzBved0YMjCq--s0kad.png
pipeline_tag: text2text-generation
widget:
- text: Hello
example_title: No function call
output:
text: '[]'
- text: Is 49 a perfect square?
example_title: Perfect square
output:
text: '[{"name": "is_perfect_square", "arguments": {"num": 49}}]'
mf_run_id: '1806'
model-index:
- name: retrain-pipelines Function Caller
results:
- task:
type: text2text-generation
name: Text2Text Generation
dataset:
name: retrain-pipelines Function Calling
type: retrain-pipelines/func_calls
split: validation
revision: 1dea61235fb9e8b7cb1ed3762df51dfb0ae91667
metrics:
- type: precision
value: 0.0625
- type: recall
value: 0.0625
- type: f1
value: 0.0625
- type: jaccard
value: 0.0625
retrain-pipelines Function Caller
version 0.48
- 2025-03-23 10:45:39 UTC
(retraining
source-code |
pipeline-card)
Training dataset :
retrain-pipelines/func_calls v0.5
(1dea612 - 2025-03-23 10:30:06 UTC)
Base model :
unsloth/Qwen2.5-1.5B
(2d0a015 - 2025-02-06 02:32:14 UTC)
arxiv :
-2407.10671
The herein LoRa adapter can for instance be used as follows :
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import device, cuda
repo_id = "retrain-pipelines/function_caller"
revision = "<model_revision_commit_hash>"
model = AutoModelForCausalLM.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(
repo_id, revision=revision, torch_dtype="auto", device_map="auto")
device = device("cuda" if cuda.is_available() else "cpu")
def generate_tool_calls_list(query, max_new_tokens=400) -> str:
formatted_query = tokenizer.chat_template.format(query, "")
inputs = tokenizer(formatted_query, return_tensors="pt").input_ids.to(device)
outputs = model.generate(inputs, max_new_tokens=max_new_tokens, do_sample=False)
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
return generated_text[len(formatted_query):].strip()
generate_tool_calls_list("Is 49 a perfect square ?")
Powered by
retrain-pipelines
0.1.1
-
Run by Aurelien-Morgan-Bot
-
UnslothFuncCallFlow - mf_run_id : 1806