SetFit with BAAI/bge-base-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-base-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 5 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1 |
|
4 |
|
0 |
|
3 |
|
2 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("research-dump/bge-base-en-v1.5_wikidata_ent_masked_wikidata_ent_masked")
# Run inference
preds = model("###Instruction: Multi-class classification, answer with one of the labels: [delete, keep, speedy delete, comment] : ###Input: Q11843502: Template:Rfd links Merged with Q4470435 . Succu ([[User talk:Succu| int:Talkpagelinktext ]]) 19:36, 12 February 2014 (UTC)")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 28 | 53.7838 | 2279 |
Label | Training Sample Count |
---|---|
0 | 2 |
1 | 733 |
2 | 18 |
3 | 56 |
4 | 190 |
Training Hyperparameters
- batch_size: (8, 2)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 10
- body_learning_rate: (1e-05, 1e-05)
- head_learning_rate: 5e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: True
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.041 | - |
0.2002 | 500 | 0.1861 | 0.1338 |
0.4003 | 1000 | 0.0927 | 0.1352 |
0.6005 | 1500 | 0.0539 | 0.1385 |
0.8006 | 2000 | 0.0414 | 0.1415 |
1.0008 | 2500 | 0.0284 | 0.1429 |
1.2010 | 3000 | 0.0218 | 0.1359 |
1.4011 | 3500 | 0.0204 | 0.1388 |
1.6013 | 4000 | 0.0184 | 0.1486 |
1.8014 | 4500 | 0.0157 | 0.1465 |
2.0016 | 5000 | 0.0116 | 0.1530 |
2.2018 | 5500 | 0.0088 | 0.1492 |
2.4019 | 6000 | 0.0078 | 0.1582 |
2.6021 | 6500 | 0.0081 | 0.1680 |
2.8022 | 7000 | 0.0062 | 0.1487 |
3.0024 | 7500 | 0.0053 | 0.1466 |
3.2026 | 8000 | 0.004 | 0.1462 |
3.4027 | 8500 | 0.0039 | 0.1489 |
3.6029 | 9000 | 0.0025 | 0.1507 |
3.8030 | 9500 | 0.0014 | 0.1487 |
4.0032 | 10000 | 0.0015 | 0.1471 |
4.2034 | 10500 | 0.0017 | 0.1433 |
4.4035 | 11000 | 0.001 | 0.1434 |
4.6037 | 11500 | 0.0013 | 0.1425 |
4.8038 | 12000 | 0.0007 | 0.1436 |
Framework Versions
- Python: 3.12.7
- SetFit: 1.1.1
- Sentence Transformers: 3.4.1
- Transformers: 4.48.2
- PyTorch: 2.6.0+cu124
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for research-dump/bge-base-en-v1.5_wikidata_ent_masked_wikidata_ent_masked
Base model
BAAI/bge-base-en-v1.5