metadata
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: it
datasets:
- lmqg/qg_itquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: >-
<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per
riflettere tale deprezzamento.
example_title: Question Generation Example 1
- text: >-
L' individuazione del petrolio e lo sviluppo di nuovi giacimenti
richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una
produzione significativa.
example_title: Question Generation Example 2
- text: il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo.
example_title: Question Generation Example 3
model-index:
- name: lmqg/mbart-large-cc25-itquad
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_itquad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.07130659184548822
- name: ROUGE-L
type: rouge-l
value: 0.21690703343943712
- name: METEOR
type: meteor
value: 0.17974779339788577
- name: BERTScore
type: bertscore
value: 0.8063210049660572
- name: MoverScore
type: moverscore
value: 0.5683736599719899
Model Card of lmqg/mbart-large-cc25-itquad
This model is fine-tuned version of facebook/mbart-large-cc25 for question generation task on the
lmqg/qg_itquad (dataset_name: default) via lmqg
.
Please cite our paper if you use the model (https://arxiv.org/abs/2210.03992).
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
Overview
- Language model: facebook/mbart-large-cc25
- Language: it
- Training data: lmqg/qg_itquad (default)
- Online Demo: https://autoqg.net/
- Repository: https://github.com/asahi417/lm-question-generation
- Paper: https://arxiv.org/abs/2210.03992
Usage
- With
lmqg
from lmqg import TransformersQG
# initialize model
model = TransformersQG(language='it', model='lmqg/mbart-large-cc25-itquad')
# model prediction
question = model.generate_q(list_context=["Dopo il 1971 , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."], list_answer=["Dopo il 1971"])
- With
transformers
from transformers import pipeline
# initialize model
pipe = pipeline("text2text-generation", 'lmqg/mbart-large-cc25-itquad')
# question generation
question = pipe('<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.')
Evaluation Metrics
Metrics
Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
---|---|---|---|---|---|---|---|
lmqg/qg_itquad | default | 0.071 | 0.217 | 0.18 | 0.806 | 0.568 | link |
Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_itquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: facebook/mbart-large-cc25
- max_length: 512
- max_length_output: 32
- epoch: 8
- batch: 4
- lr: 0.0001
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 16
- label_smoothing: 0.15
The full configuration can be found at fine-tuning config file.
Citation
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}