metadata
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:13675
- loss:ArcFaceInBatchLoss
base_model: Alibaba-NLP/gte-modernbert-base
widget:
- source_sentence: >-
Bathurst Street has been the heart of the Jewish community of Toronto for
decades .
sentences:
- >-
Baron portrayed actress Violet Carson who played Ena Sharples in the
soap .
- >-
Bathurst Street has been the heart of the Jewish community of Toronto
for many decades .
- >-
It stretches approximately 20 miles from Manasquan Inlet in Point
Pleasant Beach in the north to Island Beach State Park in the south .
- source_sentence: >-
All tracks produced by Zack Shada , Jeremy Shada , Logan Charles , John
Spicer and Seth Renken . All tracks are written by Zack Odom and Kenneth
Mount .
sentences:
- >-
All tracks produced by Zack Shada , Jeremy Shada , Logan Charles , John
Spicer and Seth Renken . All tracks are written by Zack Odom and Kenneth
Mount .
- >-
All tracks by Zack Shada , Jeremy Shada , John Spicer , Logan Charles
and Seth Renken are produced by Zack Odom and Kenneth Mount .
- Jimmy Connors defeated Eddie Dibbs 7 -- 5 , 7 -- 5
- source_sentence: >-
Arque Municipality is situated in the eastern part of the province and
Tacopaya Municipality is located in the west .
sentences:
- >-
Arque Municipality is situated in the eastern part of the province and
Tacopaya Municipality is located in the west .
- >-
Bangkok International Preparatory and Secondary School , or Bangkok Prep
, is an independent international school located on the National
Curriculum of England based in Bangkok , Thailand .
- >-
The municipality of Tacopaya is situated in the eastern part of the
province and municipality of Arque located in the west .
- source_sentence: Browning is identified as married , but no wife or child is captured .
sentences:
- >-
Alexander Alexander is the grandson of the Sarawak - leader Tun Jugah
Barieng and the son of former politician Tan Sri Datuk Amar Leonard
Linggi .
- Browning is identified as married , but no wife or child is recorded .
- It was formerly known also as ' Crotto ' .
- source_sentence: >-
Actor Charlie Chan , who portrayed Warner Oland when `` The Black Camel ``
was filmed in Hawaii , he met .
sentences:
- >-
Chang met actor Warner Oland , who portrayed Charlie Chan , when `` The
Black Camel `` was filmed in Hawaii .
- >-
As an actor , he joined the Royal Shakespeare Company of Peter Hall ,
working with Peggy Ashcroft and Dame Edith Evans .
- >-
Actor Charlie Chan , who portrayed Warner Oland when `` The Black Camel
`` was filmed in Hawaii , he met .
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
- cosine_auc_precision_cache_hit_ratio
- cosine_auc_similarity_distribution
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: custom-information-retrieval
name: Custom Information Retrieval
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy@1
value: 0.5880219631236443
name: Cosine Accuracy@1
- type: cosine_precision@1
value: 0.5880219631236443
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.5706780985738924
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.7717640552650085
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.5880219631236443
name: Cosine Mrr@1
- type: cosine_map@100
value: 0.7213999116625115
name: Cosine Map@100
- type: cosine_auc_precision_cache_hit_ratio
value: 0.35292771304732773
name: Cosine Auc Precision Cache Hit Ratio
- type: cosine_auc_similarity_distribution
value: 0.1674589579463346
name: Cosine Auc Similarity Distribution
Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-modernbert-base on the LangCache Sentence Pairs (all) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for sentence pair similarity.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-modernbert-base
- Maximum Sequence Length: 100 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(mlp_hidden): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.ReLU'})
(mlp_out): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-v3")
# Run inference
sentences = [
'Actor Charlie Chan , who portrayed Warner Oland when `` The Black Camel `` was filmed in Hawaii , he met .',
'Actor Charlie Chan , who portrayed Warner Oland when `` The Black Camel `` was filmed in Hawaii , he met .',
'Chang met actor Warner Oland , who portrayed Charlie Chan , when `` The Black Camel `` was filmed in Hawaii .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 1.0000, 0.5313],
# [1.0000, 1.0000, 0.5313],
# [0.5313, 0.5313, 1.0000]])
Evaluation
Metrics
Custom Information Retrieval
- Dataset:
test - Evaluated with
ir_evaluator.CustomInformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.588 |
| cosine_precision@1 | 0.588 |
| cosine_recall@1 | 0.5707 |
| cosine_ndcg@10 | 0.7718 |
| cosine_mrr@1 | 0.588 |
| cosine_map@100 | 0.7214 |
| cosine_auc_precision_cache_hit_ratio | 0.3529 |
| cosine_auc_similarity_distribution | 0.1675 |
Training Details
Training Dataset
LangCache Sentence Pairs (all)
- Dataset: LangCache Sentence Pairs (all)
- Size: 6,786 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 9 tokens
- mean: 27.96 tokens
- max: 50 tokens
- min: 9 tokens
- mean: 27.98 tokens
- max: 51 tokens
- min: 9 tokens
- mean: 27.56 tokens
- max: 49 tokens
- Samples:
anchor positive negative ( 1 ) Lakers vs. ( 2 ) San Antonio Spurs : `` Los Angeles Lakers Win 4-0( 1 ) Lakers vs. ( 2 ) San Antonio Spurs :Los Angeles Lakers win series 4-0( 1 ) Los Angeles Lakers vs. ( 2 ) San Antonio Spurs :Lakers win series 4-0( 1 ) Lakers vs. ( 2 ) San Antonio Spurs :Los Angeles Lakers win series 4-0( 1 ) Lakers vs. ( 2 ) San Antonio Spurs : `` Los Angeles Lakers Win 4-0The study included 752 universities in Pennsylvania , including public schools , public charter schools and traditional public magnet schools .( 1 ) Los Angeles Lakers vs. ( 2 ) San Antonio Spurs :Lakers win series 4-0( 1 ) Los Angeles Lakers vs. ( 2 ) San Antonio Spurs :Lakers win series 4-0( 1 ) Lakers vs. ( 2 ) San Antonio Spurs : `` Los Angeles Lakers Win 4-0 - Loss:
losses.ArcFaceInBatchLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
LangCache Sentence Pairs (all)
- Dataset: LangCache Sentence Pairs (all)
- Size: 6,786 evaluation samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 9 tokens
- mean: 27.96 tokens
- max: 50 tokens
- min: 9 tokens
- mean: 27.98 tokens
- max: 51 tokens
- min: 9 tokens
- mean: 27.56 tokens
- max: 49 tokens
- Samples:
anchor positive negative ( 1 ) Lakers vs. ( 2 ) San Antonio Spurs : `` Los Angeles Lakers Win 4-0( 1 ) Lakers vs. ( 2 ) San Antonio Spurs :Los Angeles Lakers win series 4-0( 1 ) Los Angeles Lakers vs. ( 2 ) San Antonio Spurs :Lakers win series 4-0( 1 ) Lakers vs. ( 2 ) San Antonio Spurs :Los Angeles Lakers win series 4-0( 1 ) Lakers vs. ( 2 ) San Antonio Spurs : `` Los Angeles Lakers Win 4-0The study included 752 universities in Pennsylvania , including public schools , public charter schools and traditional public magnet schools .( 1 ) Los Angeles Lakers vs. ( 2 ) San Antonio Spurs :Lakers win series 4-0( 1 ) Los Angeles Lakers vs. ( 2 ) San Antonio Spurs :Lakers win series 4-0( 1 ) Lakers vs. ( 2 ) San Antonio Spurs : `` Los Angeles Lakers Win 4-0 - Loss:
losses.ArcFaceInBatchLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 300per_device_eval_batch_size: 300gradient_accumulation_steps: 2weight_decay: 0.001adam_beta2: 0.98adam_epsilon: 1e-06num_train_epochs: 1warmup_ratio: 0.05bf16: Truedataloader_num_workers: 4dataloader_prefetch_factor: 4load_best_model_at_end: Trueoptim: stable_adamwddp_find_unused_parameters: Falsedataloader_persistent_workers: Truepush_to_hub: Truehub_model_id: redis/langcache-embed-v3eval_on_start: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 300per_device_eval_batch_size: 300per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.001adam_beta1: 0.9adam_beta2: 0.98adam_epsilon: 1e-06max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.05warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 4dataloader_prefetch_factor: 4past_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: stable_adamwoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Falseddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Trueskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: redis/langcache-embed-v3hub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Validation Loss | test_cosine_ndcg@10 |
|---|---|---|---|
| 0 | 0 | 1.0850 | 0.7718 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}